Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticleBrain Tumor Imaging

Identification of a Single-Dose, Low-Flip-Angle–Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma

Aliya Anil, Ashley M. Stokes, John P. Karis, Laura C. Bell, Jennifer Eschbacher, Kristofer Jennings, Melissa A. Prah, Leland S. Hu, Jerrold L. Boxerman, Kathleen M. Schmainda and C. Chad Quarles
American Journal of Neuroradiology October 2024, 45 (10) 1545-1551; DOI: https://doi.org/10.3174/ajnr.A8357
Aliya Anil
aFrom the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Aliya Anil
Ashley M. Stokes
bDivision of Neuroimaging Research and Barrow Neuroimaging Innovation Center (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ashley M. Stokes
John P. Karis
cDepartment of Neuroradiology (J.P.K.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John P. Karis
Laura C. Bell
dClinical Imaging Group (L.C.B.), Genentech Inc., San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Laura C. Bell
Jennifer Eschbacher
eDepartment of Neuropathology (J.E.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jennifer Eschbacher
Kristofer Jennings
fDepartment of Biostatistics (K.J.), The University of Texas MD Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kristofer Jennings
Melissa A. Prah
gDepartment of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Melissa A. Prah
Leland S. Hu
hDepartment of Radiology (L.S.H.), Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Leland S. Hu
Jerrold L. Boxerman
iDepartment of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jerrold L. Boxerman
Kathleen M. Schmainda
gDepartment of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kathleen M. Schmainda
C. Chad Quarles
aFrom the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Chad Quarles
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Stupp R,
    2. Weller M,
    3. Belanger K, et al
    . Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987–96 doi:10.1056/NEJMoa043330
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Clarke JL,
    2. Chang S
    . Pseudoprogression and pseudoresponse: challenges in brain tumor imaging. Curr Neurol Neurosci Rep 2009;9:241–46 doi:10.1007/s11910-009-0035-4 pmid:19348713
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Brandsma D,
    2. Van Den Bent MJ
    . Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 2009;22:633–38 doi:10.1097/WCO.0b013e328332363e pmid:19770760
    CrossRefPubMed
  4. 4.↵
    1. Ellingson BM,
    2. Chung C,
    3. Pope WB, et al
    . Pseudoprogression, radionecrosis, inflammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol 2017;134:495–504 doi:10.1007/s11060-017-2375-2 pmid:28382534
    CrossRefPubMed
  5. 5.↵
    1. Hygino Da Cruz LC,
    2. Rodriguez I,
    3. Domingues RC, et al
    . Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 2011;32:1978–85 doi:10.3174/ajnr.A2397 pmid:21393407
    Abstract/FREE Full Text
  6. 6.↵
    1. Brandsma D,
    2. Stalpers L,
    3. Taal W, et al
    . Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 2008;9:453–61 doi:10.1016/S1470-2045(08)70125-6 pmid:18452856
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Hu LS,
    2. Hawkins-Daarud A,
    3. Wang L, et al
    . Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett 2020;477:97–106 doi:10.1016/j.canlet.2020.02.025 pmid:32112907
    CrossRefPubMed
  8. 8.↵
    1. Qin D,
    2. Yang G,
    3. Jing H, et al
    . Tumor progression and treatment-related changes: radiological diagnosis challenges for the evaluation of post treated glioma. Cancers (Basel) 2022;14:3771 doi:10.3390/cancers14153771
    CrossRefPubMed
  9. 9.↵
    1. Thust SC,
    2. Van Den Bent MJ,
    3. Smits M
    . Pseudoprogression of brain tumors. J Magn Reson Imaging 2018;48:571–89 doi:10.1002/jmri.26171 pmid:29734497
    CrossRefPubMed
  10. 10.↵
    1. Malik DG,
    2. Rath TJ,
    3. Urcuyo Acevedo JC, et al
    . Advanced MRI protocols to discriminate glioma from treatment effects: state of the art and future directions. Front Radio 2022;2:809373 doi:10.3389/fradi.2022.809373
    CrossRefPubMed
  11. 11.↵
    1. Kim YH,
    2. Oh SW,
    3. Lim YJ, et al
    . Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 2010;112:758–65 doi:10.1016/j.clineuro.2010.06.005 pmid:20619531
    CrossRefPubMed
  12. 12.↵
    1. Nael K,
    2. Bauer AH,
    3. Hormigo A, et al
    . Multiparametric MRI for differentiation of radiation necrosis from recurrent tumor in patients with treated glioblastoma. AJR Am J Roentgenol 2018;210:18–23 doi:10.2214/AJR.17.18003 pmid:28952810
    CrossRefPubMed
  13. 13.↵
    1. Prager AJ,
    2. Martinez N,
    3. Beal K, et al
    . Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 2015;36:877–85 doi:10.3174/ajnr.A4218 pmid:25593202
    Abstract/FREE Full Text
  14. 14.↵
    1. Zhang J,
    2. Wang Y,
    3. Wang Y, et al
    . Perfusion magnetic resonance imaging in the differentiation between glioma recurrence and pseudoprogression: a systematic review, meta-analysis and meta-regression. Quant Imaging Med Surg 2022;12:4805–22 doi:10.21037/qims-22-32 pmid:36185045
    CrossRefPubMed
  15. 15.↵
    1. Sugahara T,
    2. Korogi Y,
    3. Tomiguchi S, et al
    . Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 2000;21:901–09
    Abstract/FREE Full Text
  16. 16.↵
    1. Wang L,
    2. Wei L,
    3. Wang J, et al
    . Evaluation of perfusion MRI value for tumor progression assessment after glioma radiotherapy: a systematic review and meta-analysis. Medicine (Baltimore) 2020;99:e23766 doi:10.1097/MD.0000000000023766 pmid:33350761
    CrossRefPubMed
  17. 17.↵
    1. Fatterpekar GM,
    2. Galheigo D,
    3. Narayana A, et al
    . Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum—use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol 2012;198:19–26 doi:10.2214/AJR.11.7417 pmid:2219447
    CrossRefPubMed
  18. 18.↵
    1. Shiroishi MS,
    2. Boxerman JL,
    3. Pope WB
    . Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma. Neuro Oncol 2016;18:467–78 doi:10.1093/neuonc/nov179 pmid:26364321
    CrossRefPubMed
  19. 19.↵
    1. Hu LS,
    2. Eschbacher JM,
    3. Dueck AC, et al
    . Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol 2012;33:69–76 doi:10.3174/ajnr.A2743 pmid:22095961
    Abstract/FREE Full Text
  20. 20.↵
    1. Gasparetto EL,
    2. Pawlak MA,
    3. Patel SH, et al
    . Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Radiology 2009;250:887–96 doi:10.1148/radiol.2502071444 pmid:19244052
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Schmainda KM,
    2. Prah M,
    3. Connelly J, et al
    . Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol 2014;16:880–88 doi:10.1093/neuonc/not216 pmid:24431219
    CrossRefPubMed
  22. 22.↵
    1. Law M,
    2. Young RJ,
    3. Babb JS, et al
    . Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247:490–98 doi:10.1148/radiol.2472070898 pmid:18349315
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Bedekar D,
    2. Jensen T,
    3. Schmainda KM
    . Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter‐ and intrapatient comparisons. Magnetic Resonance in Med 2010;64:907–13 doi:10.1002/mrm.22445
    CrossRefPubMed
  24. 24.↵
    1. Hoxworth JM,
    2. Eschbacher JM,
    3. Gonzales AC, et al
    . Performance of standardized relative CBV for quantifying regional histologic tumor burden in recurrent high-grade glioma: comparison against normalized relative CBV using image-localized stereotactic biopsies. AJNR Am J Neuroradiol 2020;41:408–15 doi:10.3174/ajnr.A6486 pmid:32165359
    Abstract/FREE Full Text
  25. 25.↵
    1. Prah MA,
    2. Stufflebeam SM,
    3. Paulson ES, et al
    . Repeatability of standardized and normalized relative CBV in patients with newly diagnosed glioblastoma. AJNR Am J Neuroradiol 2015;36:1654–61 doi:10.3174/ajnr.A4374 pmid:26066626
    Abstract/FREE Full Text
  26. 26.↵
    1. Hu LS,
    2. Baxter LC,
    3. Smith KA, et al
    . Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009;30:552–58 doi:10.3174/ajnr.A1377 pmid:19056837
    Abstract/FREE Full Text
  27. 27.↵
    1. Prah MA,
    2. Al-Gizawiy MM,
    3. Mueller WM, et al
    . Spatial discrimination of glioblastoma and treatment effect with histologically-validated perfusion and diffusion magnetic resonance imaging metrics. J Neurooncol 2018;136:13–21 doi:10.1007/s11060-017-2617-3 pmid:28900832
    CrossRefPubMed
  28. 28.↵
    1. Hu LS,
    2. Eschbacher JM,
    3. Heiserman JE, et al
    . Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol 2012;14:919–30 doi:10.1093/neuonc/nos112 pmid:22561797
    CrossRefPubMed
  29. 29.↵
    1. Connelly JM,
    2. Prah MA,
    3. Santos-Pinheiro F, et al
    . Magnetic resonance imaging mapping of brain tumor burden: clinical implications for neurosurgical management: case report. Neurosurg Open 2021;2:okab029 doi:10.1093/neuopn/okab029 pmid:34661110
    CrossRefPubMed
  30. 30.↵
    1. Amidon RF,
    2. Santos-Pinheiro F,
    3. Straza M, et al
    . Case report: fractional brain tumor burden magnetic resonance mapping to assess response to pulsed low-dose-rate radiotherapy in newly-diagnosed glioblastoma. Front Oncol 2022;12:1066191 doi:10.3389/fonc.2022.1066191 pmid:36561526
    CrossRefPubMed
  31. 31.↵
    1. Patel P,
    2. Baradaran H,
    3. Delgado D, et al
    . MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol 2017;19:118–27 doi:10.1093/neuonc/now148 pmid:27502247
    CrossRefPubMed
  32. 32.↵
    1. Hu LS,
    2. Baxter LC,
    3. Pinnaduwage DS, et al
    . Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas. AJNR Am J Neuroradiol 2010;31:40–48 doi:10.3174/ajnr.A1787 pmid:19749223
    Abstract/FREE Full Text
  33. 33.↵
    1. Paulson ES,
    2. Schmainda KM
    . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008;249:601–13 doi:10.1148/radiol.2492071659 pmid:18780827
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Schmainda KM,
    2. Prah MA,
    3. Rand SD, et al
    . Multisite concordance of DSC-MRI analysis for brain tumors: results of a National Cancer Institute Quantitative Imaging Network collaborative project. AJNR Am J Neuroradiol 2018;39:1008–16 doi:10.3174/ajnr.A5675 pmid:29794239
    Abstract/FREE Full Text
  35. 35.↵
    1. Iv M,
    2. Liu X,
    3. Lavezo J, et al
    . Perfusion MRI-based fractional tumor burden differentiates between tumor and treatment effect in recurrent glioblastomas and informs clinical decision-making. AJNR Am J Neuroradiol 2019;40:1649–57 doi:10.3174/ajnr.A6211 pmid:31515215
    Abstract/FREE Full Text
  36. 36.↵
    1. Welker K,
    2. Boxerman J,
    3. Kalnin A, et al
    . ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015;36:E41–E51 doi:10.3174/ajnr.A4341 pmid:25907520
    Abstract/FREE Full Text
  37. 37.↵
    1. Boxerman JL,
    2. Quarles CC,
    3. Hu LS, et al
    . Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020;22:1262–75 doi:10.1093/neuonc/noaa141 pmid:32516388
    CrossRefPubMed
  38. 38.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    PubMedWeb of Science
  39. 39.↵
    1. Schmainda KM,
    2. Prah MA,
    3. Hu LS, et al
    . Moving toward a consensus DSC-MRI protocol: validation of a low-flip angle single-dose option as a reference standard for brain tumors. AJNR Am J Neuroradiol 2019;40:626–33 doi:10.3174/ajnr.A6015 pmid:30923088
    Abstract/FREE Full Text
  40. 40.↵
    1. Semmineh NB,
    2. Bell LC,
    3. Stokes AM, et al
    . Optimization of acquisition and analysis methods for clinical dynamic susceptibility contrast MRI using a population-based digital reference object. AJNR Am J Neuroradiol 2018;39:1981–88 doi:10.3174/ajnr.A5827 pmid:30309842
    Abstract/FREE Full Text
  41. 41.↵
    1. Kuo F,
    2. Ng NN,
    3. Nagpal S, et al
    . DSC perfusion MRI-derived fractional tumor burden and relative CBV differentiate tumor progression and radiation necrosis in brain metastases treated with stereotactic radiosurgery. AJNR Am J Neuroradiol 2022;43:689–95 doi:10.3174/ajnr.A7501 pmid:35483909
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (10)
American Journal of Neuroradiology
Vol. 45, Issue 10
1 Oct 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Identification of a Single-Dose, Low-Flip-Angle–Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Aliya Anil, Ashley M. Stokes, John P. Karis, Laura C. Bell, Jennifer Eschbacher, Kristofer Jennings, Melissa A. Prah, Leland S. Hu, Jerrold L. Boxerman, Kathleen M. Schmainda, C. Chad Quarles
Identification of a Single-Dose, Low-Flip-Angle–Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma
American Journal of Neuroradiology Oct 2024, 45 (10) 1545-1551; DOI: 10.3174/ajnr.A8357

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Low-Flip-Angle CBV Threshold in Glioblastoma
Aliya Anil, Ashley M. Stokes, John P. Karis, Laura C. Bell, Jennifer Eschbacher, Kristofer Jennings, Melissa A. Prah, Leland S. Hu, Jerrold L. Boxerman, Kathleen M. Schmainda, C. Chad Quarles
American Journal of Neuroradiology Oct 2024, 45 (10) 1545-1551; DOI: 10.3174/ajnr.A8357
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Differenzierung zwischen Rezidiv und Therapieartefakten beim Glioblastom
    Neuroradiologie Scan 2025 15 02

More in this TOC Section

  • Temporal Evolution of Vestibular schwannoma
  • CE MRI for Brain Metastasis Detection
  • Standardized rCBV in Brain Metastases
Show more BRAIN TUMOR IMAGING

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire