Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Review ArticlePediatric Neuroimaging

Cortically Based Brain Tumors in Children: A Decision-Tree Approach in the Radiology Reading Room

V. Rameh, U. Löbel, F. D’Arco, A. Bhatia, K. Mankad, T.Y. Poussaint and C.A. Alves
American Journal of Neuroradiology January 2025, 46 (1) 11-23; DOI: https://doi.org/10.3174/ajnr.A8477
V. Rameh
aFrom the Department of Radiology (V.R., T.Y.P., C.A.A.), Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Rameh
U. Löbel
bDepartment of Radiology (U.L., F.D., K.M.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for U. Löbel
F. D’Arco
bDepartment of Radiology (U.L., F.D., K.M.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Bhatia
cDepartment of Radiology (A.B.), Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Bhatia
K. Mankad
bDepartment of Radiology (U.L., F.D., K.M.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Mankad
T.Y. Poussaint
aFrom the Department of Radiology (V.R., T.Y.P., C.A.A.), Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.Y. Poussaint
C.A. Alves
aFrom the Department of Radiology (V.R., T.Y.P., C.A.A.), Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.A. Alves
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ostrom QT,
    2. Price M,
    3. Neff C, et al
    . CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2016-2020. Neuro Oncol 2023;25:iv1–99 doi:10.1093/neuonc/noad149 pmid:37793125
    CrossRefPubMed
  2. 2.↵
    1. Louis DN,
    2. Perry A,
    3. Wesseling P, et al
    . The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021;23:1231–51 doi:10.1093/neuonc/noab106 pmid:34185076
    CrossRefPubMed
  3. 3.↵
    1. Louis DN,
    2. Perry A,
    3. Reifenberger G, et al
    . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–20 doi:10.1007/s00401-016-1545-1 pmid:27157931
    CrossRefPubMed
  4. 4.↵
    1. Jessa S,
    2. Blanchet-Cohen A,
    3. Krug B, et al
    . Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 2019;51:1702–13 doi:10.1038/s41588-019-0531-7 pmid:31768071
    CrossRefPubMed
  5. 5.↵
    1. Buccoliero AM,
    2. Giunti L,
    3. Moscardi S, et al
    . Pediatric high grade glioma classification criteria and molecular features of a case series. Genes (Basel) 2022;13:624 doi:10.3390/genes13040624 pmid:35456430
    CrossRefPubMed
  6. 6.↵
    1. Kalelioglu T,
    2. Emerson D,
    3. Luk A, et al
    . Imaging features of diffuse hemispheric glioma, H3 G34-mutant: report of 4 cases. J Neuroradiol 2023;50:309–14 doi:10.1016/j.neurad.2022.12.001 pmid:36493960
    CrossRefPubMed
  7. 7.↵
    1. Kurokawa R,
    2. Baba A,
    3. Emile P, et al
    . Neuroimaging features of angiocentric glioma: a case series and systematic review. J Neuroimaging 2022;32:389–99 doi:10.1111/jon.12983 pmid:35201652
    CrossRefPubMed
  8. 8.↵
    1. Vuong HG,
    2. Le HT,
    3. Dunn IF
    . The prognostic significance of further genotyping H3G34 diffuse hemispheric gliomas. Cancer 2022;128:1907–12 doi:10.1002/cncr.34156 pmid:35195909
    CrossRefPubMed
  9. 9.↵
    1. Onishi S,
    2. Amatya VJ,
    3. Karlowee V, et al
    . Radiological and immunostaining characteristics of H3.3 G34R-mutant glioma: a report of 3 cases and review of the literature. Pediatr Neurosurg 2020;55:319–25 doi:10.1159/000511672 pmid:33227796
    CrossRefPubMed
  10. 10.↵
    1. Picart T,
    2. Barritault M,
    3. Poncet D, et al
    . Characteristics of diffuse hemispheric gliomas, H3 G34-mutant in adults. Neurooncol Adv 2021;3:vdab061 doi:10.1093/noajnl/vdab061 pmid:34056608
    CrossRefPubMed
  11. 11.↵
    1. Korshunov A,
    2. Capper D,
    3. Reuss D, et al
    . Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 2016;131:137–46 doi:10.1007/s00401-015-1493-1
    CrossRefPubMed
  12. 12.↵
    1. Puntonet J,
    2. Dangouloff-Ros V,
    3. Saffroy R, et al
    . Historadiological correlations in high-grade glioma with the histone 3.3 G34R mutation. J Neuroradiol 2018;45:316–22 doi:10.1016/j.neurad.2018.02.006 pmid:29505840
    CrossRefPubMed
  13. 13.↵
    1. Wang L,
    2. Shao L,
    3. Li H, et al
    . Histone H3.3 G34-mutant diffuse gliomas in adults. Am J Surg Pathol 2022;46:249–57 doi:10.1097/PAS.0000000000001781 pmid:34352809
    CrossRefPubMed
  14. 14.↵
    1. Lasocki A,
    2. Abdalla G,
    3. Chow G, et al
    . Imaging features associated with H3 K27-altered and H3 G34-mutant gliomas: a narrative systematic review. Cancer Imaging 2022;22:63 doi:10.1186/s40644-022-00500-3
    CrossRefPubMed
  15. 15.↵
    1. Johnson DR,
    2. Giannini C,
    3. Vaubel RA, et al
    . A radiologist’s guide to the 2021 WHO Central Nervous System Tumor Classification: part I-Key concepts and the spectrum of diffuse gliomas. Radiology 2022;304:494–508 doi:10.1148/radiol.213063
    CrossRefPubMed
  16. 16.↵
    1. Lavrador JP,
    2. Reisz Z,
    3. Sibtain N, et al
    . H3 G34-mutant high-grade gliomas: integrated clinical, imaging and pathological characterisation of a single-centre case series. Acta Neurochir (Wien) 2023;165:1615–33 doi:10.1007/s00701-023-05545-2 pmid:36929449
    CrossRefPubMed
  17. 17.↵
    1. Nafe R,
    2. Porto L,
    3. Samp PF, et al
    . Adult-type and pediatric-type diffuse gliomas: what the neuroradiologist should know. Clin Neuroradiol 2023;33:611–24 doi:10.1007/s00062-023-01277-z pmid:36941392
    CrossRefPubMed
  18. 18.↵
    1. Tauziède-Espariat A,
    2. Debily MA,
    3. Castel D, et al
    . The pediatric supratentorial MYCN-amplified high-grade gliomas methylation class presents the same radiological, histopathological and molecular features as their pontine counterparts. Acta Neuropathol Commun 2020;8:104 doi:10.1186/s40478-020-00974-x
    CrossRefPubMed
  19. 19.↵
    1. Gonçalves FG,
    2. Alves C,
    3. Vossough A
    . Updates in pediatric malignant gliomas. Top Magn Reson Imaging 2020;29:83–94 doi:10.1097/RMR.0000000000000235 pmid:32271285
    CrossRefPubMed
  20. 20.↵
    1. Gonçalves FG,
    2. Viaene AN,
    3. Vossough A
    . Advanced magnetic resonance imaging in pediatric glioblastomas. Front Neurol 2021;12:733323 doi:10.3389/fneur.2021.733323 pmid:34858308
    CrossRefPubMed
  21. 21.↵
    1. DeSisto J,
    2. Lucas JT, Jr.,
    3. Xu K, et al
    . Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma. Nat Commun 2021;12:5531 doi:10.1038/s41467-021-25709-x pmid:34545084
    CrossRefPubMed
  22. 22.↵
    1. Korshunov A,
    2. Schrimpf D,
    3. Ryzhova M, et al
    . H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 2017;134:507–16 doi:10.1007/s00401-017-1710-1
    CrossRefPubMed
  23. 23.↵
    1. Guerreiro Stucklin AS,
    2. Ryall S,
    3. Fukuoka K, et al
    . Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 2019;10:4343 doi:10.1038/s41467-019-12187-5 pmid:31554817
    CrossRefPubMed
  24. 24.↵
    1. Tauziède-Espariat A,
    2. Beccaria K,
    3. Dangouloff-Ros V, et al
    . A comprehensive analysis of infantile central nervous system tumors to improve distinctive criteria for infant-type hemispheric glioma versus desmoplastic infantile ganglioglioma/astrocytoma. Brain Pathol 2023;33:e13182
    CrossRefPubMed
  25. 25.↵
    1. Olsen TK,
    2. Panagopoulos I,
    3. Meling TR, et al
    . Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity? Neuro Oncol 2015;17:1365–73 doi:10.1093/neuonc/nov039 pmid:25795305
    CrossRefPubMed
  26. 26.↵
    1. Louis DN,
    2. Ohgaki H,
    3. Wiestler OD, et al
    . The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathol 2007;114:97–109 doi:10.1007/s00401-007-0243-4 pmid:17618441
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Ampie L,
    2. Choy W,
    3. DiDomenico JD, et al
    . Clinical attributes and surgical outcomes of angiocentric gliomas. J Clin Neurosci 2016;28:117–22 doi:10.1016/j.jocn.2015.11.015
    CrossRefPubMed
  28. 28.↵
    1. Amemiya S,
    2. Shibahara J,
    3. Aoki S, et al
    . Recently established entities of central nervous system tumors: review of radiological findings. J Comput Assist Tomogr 2008;32:279–85 doi:10.1097/RCT.0b013e31814ce981 pmid:18379318
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Aguilar HN,
    2. Hung RW,
    3. Mehta V, et al
    . Imaging characteristics of an unusual, high-grade angiocentric glioma: a case report and review of the literature. J Radiology Case Rep 2012;6:1–10 doi:10.3941/jrcr.v6i10.1134 pmid:23378871
    CrossRefPubMed
  30. 30.↵
    1. Miyata H,
    2. Ryufuku M,
    3. Kubota Y, et al
    . Adult-onset angiocentric glioma of epithelioid cell-predominant type of the mesial temporal lobe suggestive of a rare but distinct clinicopathological subset within a spectrum of angiocentric cortical ependymal tumors. Neuropathology 2012;32:479–91 doi:10.1111/j.1440-1789.2011.01278.x
    CrossRefPubMed
  31. 31.↵
    1. Ni HC,
    2. Chen SY,
    3. Chen L, et al
    . Angiocentric glioma: a report of nine new cases, including four with atypical histological features. Neuropathol Appl Neurobiol 2015;41:333–46 doi:10.1111/nan.12158 pmid:24861831
    CrossRefPubMed
  32. 32.↵
    1. Wagner MW,
    2. Nobre L,
    3. Namdar K, et al
    . T2-FLAIR mismatch sign in pediatric low-grade glioma. AJNR Am J Neuroradiol 2023;44:841–45 doi:10.3174/ajnr.A7916
    Abstract/FREE Full Text
  33. 33.↵
    1. Chen G,
    2. Wang L,
    3. Wu J, et al
    . Intractable epilepsy due to angiocentric glioma: a case report and minireview. Exp Ther Med 2014;7:61–65 doi:10.3892/etm.2013.1402
    CrossRefPubMed
  34. 34.↵
    1. Chiang J,
    2. Harreld JH,
    3. Tinkle CL, et al
    . A single-center study of the clinicopathologic correlates of gliomas with a MYB or MYBL1 alteration. Acta Neuropathol 2019;138:1091–92 doi:10.1007/s00401-019-02081-1 pmid:31595312
    CrossRefPubMed
  35. 35.↵
    1. Wefers AK,
    2. Stichel D,
    3. Schrimpf D, et al
    . Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathol 2020;139:193–209 doi:10.1007/s00401-019-02078-w pmid:31563982
    CrossRefPubMed
  36. 36.↵
    1. Purkait S,
    2. Mahajan S,
    3. Sharma MC, et al
    . Pediatric-type diffuse low grade gliomas: histomolecular profile and practical approach to their integrated diagnosis according to the WHO CNS5 classification. Indian J Pathol Microbiol 2022;65:S42–49
    CrossRefPubMed
  37. 37.↵
    1. Huse JT,
    2. Snuderl M,
    3. Jones DT, et al
    . Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway. Acta Neuropathol 2017;133:417–29 doi:10.1007/s00401-016-1639-9 pmid:27812792
    CrossRefPubMed
  38. 38.↵
    1. AlRayahi J,
    2. Zapotocky M,
    3. Ramaswamy V, et al
    . Pediatric brain tumor genetics: what radiologists need to know. Radiographics 2018;38:2102–22 doi:10.1148/rg.2018180109
    CrossRefPubMed
  39. 39.↵
    1. Chen Y,
    2. Tian T,
    3. Guo X, et al
    . Polymorphous low-grade neuroepithelial tumor of the young: case report and review focus on the radiological features and genetic alterations. BMC Neurol 2020;20:123 doi:10.1186/s12883-020-01679-3
    CrossRefPubMed
  40. 40.↵
    1. Barretto BB,
    2. Mani J,
    3. Venkatraman S, et al
    . Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): a newly described entity of special radiological significance. Indian J Radiology Imaging 2023;33:567–70 doi:10.1055/s-0043-1771362 pmid:37811183
    CrossRefPubMed
  41. 41.↵
    1. Ida CM,
    2. Johnson DR,
    3. Nair AA, et al
    . Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): molecular profiling confirms frequent MAPK pathway activation. J Neuropathol Exp Neurol 2021;80:821–29 doi:10.1093/jnen/nlab075
    CrossRefPubMed
  42. 42.↵
    1. Bag AK,
    2. Chiang J,
    3. Patay Z
    . Radiohistogenomics of pediatric low-grade neuroepithelial tumors. Neuroradiology 2021;63:1185–213 doi:10.1007/s00234-021-02691-1 pmid:33779771
    CrossRefPubMed
  43. 43.↵
    1. Isler C,
    2. Erturk Cetin O,
    3. Ugurlar D, et al
    . Dysembryoplastic neuroepithelial tumours: clinical, radiological, pathological features and outcome. Br J Neurosurg 2018;32:436–41 doi:10.1080/02688697.2018.1476671 pmid:29792345
    CrossRefPubMed
  44. 44.↵
    1. Mano Y,
    2. Kumabe T,
    3. Shibahara I, et al
    . Dynamic changes in magnetic resonance imaging appearance of dysembryoplastic neuroepithelial tumor with or without malignant transformation. J Neurosurg Pediatr 2013;11:518–25 doi:10.3171/2013.1.PEDS11449
    CrossRefPubMed
  45. 45.↵
    1. Adachi Y,
    2. Yagishita A
    . Gangliogliomas: characteristic imaging findings and role in the temporal lobe epilepsy. Neuroradiology 2008;50:829–34 doi:10.1007/s00234-008-0410-x
    CrossRefPubMed
  46. 46.↵
    1. Chen J,
    2. Qi X,
    3. Zhang M, et al
    . Review on neuroimaging in pediatric-type diffuse low-grade gliomas. Front Pediatr 2023;11:1149646 doi:10.3389/fped.2023.1149646
    CrossRefPubMed
  47. 47.↵
    1. Qaddoumi I,
    2. Orisme W,
    3. Wen J, et al
    . Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 2016;131:833–45 doi:10.1007/s00401-016-1539-z pmid:26810070
    CrossRefPubMed
  48. 48.↵
    1. Banerjee A,
    2. Jakacki RI,
    3. Onar-Thomas A, et al
    . A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol 2017;19:1135–44 doi:10.1093/neuonc/now282
    CrossRefPubMed
  49. 49.↵
    1. Perreault S,
    2. Larouche V,
    3. Tabori U, et al
    . A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer 2019;19:1250 doi:10.1186/s12885-019-6442-2 pmid:31881853
    CrossRefPubMed
  50. 50.↵
    1. Hammas N,
    2. Senhaji N,
    3. Alaoui Lamrani MY, et al
    . Astroblastoma - a rare and challenging tumor: a case report and review of the literature. J Med Case Rep 2018;12:102 doi:10.1186/s13256-018-1623-1 pmid:29678196
    CrossRefPubMed
  51. 51.↵
    1. Sprenger F,
    2. da Silva EB, Jr.,
    3. Cavalcanti MS, et al
    . Radiology-pathology and surgical correlation in astroblastoma. AJNR Am J Neuroradiol 2023;44:390–95 doi:10.3174/ajnr.A7824 pmid:36958802
    Abstract/FREE Full Text
  52. 52.↵
    1. Port JD,
    2. Brat DJ,
    3. Burger PC, et al
    . Astroblastoma: radiologic-pathologic correlation and distinction from ependymoma. AJNR Am J Neuroradiol 2002;23:243–47 pmid:11847049
    PubMedWeb of Science
  53. 53.↵
    1. Lehman NL,
    2. Usubalieva A,
    3. Lin T, et al
    . Genomic analysis demonstrates that histologically-defined astroblastomas are molecularly heterogeneous and that tumors with MN1 rearrangement exhibit the most favorable prognosis. Acta Neuropathol Commun 2019;7:42 doi:10.1186/s40478-019-0689-3 pmid:30876455
    CrossRefPubMed
  54. 54.↵
    1. Sugita Y,
    2. Terasaki M,
    3. Shigemori M, et al
    . Astroblastoma with unusual signet-ring-like cell components: a case report and literature review. Neuropathology 2002;22:200–205 doi:10.1046/j.1440-1789.2002.00435.x pmid:12416560
    CrossRefPubMed
  55. 55.↵
    1. Thiessen B,
    2. Finlay J,
    3. Kulkarni R, et al
    . Astroblastoma: does histology predict biologic behavior? J Neurooncol 1998;40:59–65 doi:10.1023/a:1006025000409 pmid:9874187
    CrossRefPubMed
  56. 56.↵
    1. Detti B,
    2. Scoccianti S,
    3. Maragna V, et al
    . Pleomorphic xanthoastrocytoma: a single institution retrospective analysis and a review of the literature. Radiology Med 2022;127:1134–41 doi:10.1007/s11547-022-01531-3
    CrossRef
  57. 57.↵
    1. Moore W,
    2. Mathis D,
    3. Gargan L, et al
    . Pleomorphic xanthoastrocytoma of childhood: MR imaging and diffusion MR imaging features. AJNR Am J Neuroradiol 2014;35:2192–96 doi:10.3174/ajnr.A4011 pmid:24994821
    Abstract/FREE Full Text
  58. 58.↵
    1. Perkins SM,
    2. Mitra N,
    3. Fei W, et al
    . Patterns of care and outcomes of patients with pleomorphic xanthoastrocytoma: a SEER analysis. J Neurooncol 2012;110:99–104 doi:10.1007/s11060-012-0939-8 pmid:22843450
    CrossRefPubMed
  59. 59.↵
    1. Giannini C,
    2. Scheithauer BW,
    3. Burger PC, et al
    . Pleomorphic xanthoastrocytoma: what do we really know about it? Cancer 1999;85:2033–45 pmid:10223246
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Fukuoka K,
    2. Mamatjan Y,
    3. Tatevossian R, et al
    . Clinical impact of combined epigenetic and molecular analysis of pediatric low-grade gliomas. Neuro Oncol 2020;22:1474–83 doi:10.1093/neuonc/noaa077 pmid:32242226
    CrossRefPubMed
  61. 61.↵
    1. Phillips JJ,
    2. Gong H,
    3. Chen K, et al
    . The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathol 2019;29:85–96 doi:10.1111/bpa.12639 pmid:30051528
    CrossRefPubMed
  62. 62.↵
    1. Ebrahimi A,
    2. Korshunov A,
    3. Reifenberger G, et al
    . Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival. Acta Neuropathol Commun 2022;10:5 doi:10.1186/s40478-021-01308-1 pmid:35012690
    CrossRefPubMed
  63. 63.↵
    1. Tekkök IH,
    2. Sav A
    . Anaplastic pleomorphic xanthoastrocytomas. Review of the literature with reference to malignancy potential. Pediatr Neurosurg 2004;40:171–81 doi:10.1159/000081935 pmid:15608490
    CrossRefPubMed
  64. 64.↵
    1. Nunes RH,
    2. Hsu CC,
    3. da Rocha AJ, et al
    . Multinodular and vacuolating neuronal tumor of the cerebrum: a new “leave me alone” lesion with a characteristic imaging pattern. AJNR Am J Neuroradiol 2017;38:1899–904 doi:10.3174/ajnr.A5281
    Abstract/FREE Full Text
  65. 65.↵
    1. Alsufayan R,
    2. Alcaide-Leon P,
    3. de Tilly LN, et al
    . Natural history of lesions with the MR imaging appearance of multinodular and vacuolating neuronal tumor. Neuroradiology 2017;59:873–83 doi:10.1007/s00234-017-1884-1 pmid:28752311
    CrossRefPubMed
  66. 66.↵
    1. Pekmezci M,
    2. Stevers M,
    3. Phillips JJ, et al
    . Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathol 2018;135:485–88 doi:10.1007/s00401-018-1820-4
    CrossRefPubMed
  67. 67.↵
    1. Choi E,
    2. Kim SI,
    3. Won JK, et al
    . Clinicopathological and molecular analysis of multinodular and vacuolating neuronal tumors of the cerebrum. Hum Pathol 2019;86:203–12 doi:10.1016/j.humpath.2018.11.028
    CrossRefPubMed
  68. 68.↵
    1. Park YW,
    2. Vollmuth P,
    3. Foltyn-Dumitru M, et al
    . The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: part 3-summary of imaging findings on glioneuronal and neuronal tumors. J Magn Reson Imaging 2023;58:1680–702 doi:10.1002/jmri.29016 pmid:37715567
    CrossRefPubMed
  69. 69.↵
    1. Lecler A,
    2. Chauvet D,
    3. Biassette HA, et al
    . Multiparametric imaging improves confidence in the diagnosis of multinodular and vacuolating neuronal tumor of the cerebrum. AJNR Am J Neuroradiol 2018;39:E32–33 doi:10.3174/ajnr.A5425 pmid:29051207
    FREE Full Text
  70. 70.↵
    1. Deng MY,
    2. Sill M,
    3. Sturm D, et al
    . Diffuse glioneuronal tumour with oligodendroglioma-like features and nuclear clusters (DGONC) - a molecularly defined glioneuronal CNS tumour class displaying recurrent monosomy 14. Neuropathol Appl Neurobiol 2020;46:422–30 doi:10.1111/nan.12590 pmid:31867747
    CrossRefPubMed
  71. 71.↵
    1. Pickles JC,
    2. Mankad K,
    3. Aizpurua M, et al
    . A case series of diffuse glioneuronal tumours with oligodendroglioma-like features and nuclear clusters (DGONC). Neuropathology Appl Neurobiol 2021;47:464–67 doi:10.1111/nan.12680
    CrossRefPubMed
  72. 72.↵
    1. Benesch M,
    2. Perwein T,
    3. Apfaltrer G, et al
    . MR imaging and clinical characteristics of diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters. AJNR Am J Neuroradiol 2022;43:1523–29 doi:10.3174/ajnr.A7647 pmid:36137663
    Abstract/FREE Full Text
  73. 73.↵
    1. Schindler G,
    2. Capper D,
    3. Meyer J, et al
    . Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011;121:397–405 doi:10.1007/s00401-011-0802-6 pmid:21274720
    CrossRefPubMedWeb of Science
  74. 74.↵
    1. Ramaglia A,
    2. Tortora D,
    3. Mankad K, et al
    . Role of diffusion weighted imaging for differentiating cerebral pilocytic astrocytoma and ganglioglioma BRAF V600E-mutant from wild type. Neuroradiology 2020;62:71–80 doi:10.1007/s00234-019-02304-y pmid:31667545
    CrossRefPubMed
  75. 75.↵
    1. VandenBerg SR,
    2. May EE,
    3. Rubinstein LJ, et al
    . Desmoplastic supratentorial neuroepithelial tumors of infancy with divergent differentiation potential (“desmoplastic infantile gangliogliomas”). Report on 11 cases of a distinctive embryonal tumor with favorable prognosis. J Neurosurg 1987;66:58–71 doi:10.3171/jns.1987.66.1.0058 pmid:3097276
    CrossRefPubMedWeb of Science
  76. 76.↵
    1. Koelsche C,
    2. Sahm F,
    3. Paulus W, et al
    . BRAF V600E expression and distribution in desmoplastic infantile astrocytoma/ganglioglioma. Neuropathol Appl Neurobiol 2014;40:337–44 doi:10.1111/nan.12072 pmid:23822828
    CrossRefPubMed
  77. 77.↵
    1. Daumas-Duport C,
    2. Varlet P,
    3. Bacha S, et al
    . Dysembryoplastic neuroepithelial tumors: nonspecific histological forms – a study of 40 cases. J Neurooncol 1999;41:267–80 doi:10.1023/a:1006193018140 pmid:10359147
    CrossRefPubMed
  78. 78.↵
    1. Daumas-Duport C
    . Dysembryoplastic neuroepithelial tumours. Brain Pathol 1993;3:283–95 doi:10.1111/j.1750-3639.1993.tb00755.x pmid:8293188
    CrossRefPubMedWeb of Science
  79. 79.↵
    1. Campos AR,
    2. Clusmann H,
    3. von Lehe M, et al
    . Simple and complex dysembryoplastic neuroepithelial tumors (DNT) variants: clinical profile, MRI, and histopathology. Neuroradiology 2009;51:433–43 doi:10.1007/s00234-009-0511-1 pmid:19242688
    CrossRefPubMedWeb of Science
  80. 80.↵
    1. Thom M,
    2. Gomez-Anson B,
    3. Revesz T, et al
    . Spontaneous intralesional haemorrhage in dysembryoplastic neuroepithelial tumours: a series of five cases. J Neurol Neurosurg Psychiatry 1999;67:97–101 doi:10.1136/jnnp.67.1.97
    Abstract/FREE Full Text
  81. 81.↵
    1. Shin JH,
    2. Lee HK,
    3. Khang SK, et al
    . Neuronal tumors of the central nervous system: radiologic findings and pathologic correlation. Radiographics 2002;22:1177–89 doi:10.1148/radiographics.22.5.g02se051177 pmid:12235346
    CrossRefPubMedWeb of Science
  82. 82.↵
    1. Bulakbasi N,
    2. Kocaoglu M,
    3. Sanal TH, et al
    . Dysembryoplastic neuroepithelial tumors: proton MR spectroscopy, diffusion and perfusion characteristics. Neuroradiology 2007;49:805–12 doi:10.1007/s00234-007-0263-8
    CrossRefPubMed
  83. 83.↵
    1. Sturm D,
    2. Orr BA,
    3. Toprak UH, et al
    . New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 2016;164:1060–72 doi:10.1016/j.cell.2016.01.015 pmid:26919435
    CrossRefPubMed
  84. 84.↵
    1. Shimazaki K,
    2. Kurokawa R,
    3. Franson A, et al
    . Neuroimaging features of FOXR2-activated CNS neuroblastoma: a case series and systematic review. J Neuroimaging 2023;33:359–67 doi:10.1111/jon.13095 pmid:36806312
    CrossRefPubMed
  85. 85.↵
    1. Kalu IC,
    2. Kao CM,
    3. Fritz SA
    . Management and prevention of Staphylococcus aureus infections in children. Infect Dis Clin North Am 2022;36:73–100 doi:10.1016/j.idc.2021.11.006
    CrossRefPubMed
  86. 86.↵
    1. Wang R,
    2. Guan W,
    3. Qiao M, et al
    . CNS tumor with BCOR internal tandem duplication: clinicopathologic, molecular characteristics and prognosis factors. Pathol Res Pract 2022;236:153995 doi:10.1016/j.prp.2022.153995 pmid:35809497
    CrossRefPubMed
  87. 87.↵
    1. Cardoen L,
    2. Tauziède-Espariat A,
    3. Dangouloff-Ros V, et al
    . Imaging features with histopathologic correlation of CNS high-grade neuroepithelial tumors with a BCOR internal tandem duplication. AJNR Am J Neuroradiol 2022;43:151–56 doi:10.3174/ajnr.A7367
    Abstract/FREE Full Text
  88. 88.↵
    1. Lambo S,
    2. von Hoff K,
    3. Korshunov A, et al
    . ETMR: a tumor entity in its infancy. Acta Neuropathol 2020;140:249–66 doi:10.1007/s00401-020-02182-2
    CrossRefPubMed
  89. 89.↵
    1. Meliti A,
    2. Gasim W,
    3. Al-Maghrabi H, et al
    . Embryonal tumor with multilayered rosettes; rare pediatric CNS tumor. A case report and review of literature. Int J Pediatr Adolesc Med 2022;9:174–78 doi:10.1016/j.ijpam.2021.11.002
    CrossRefPubMed
  90. 90.↵
    1. Calandrelli R,
    2. Massimi L,
    3. Pilato F, et al
    . Atypical teratoid rhabdoid tumor: proposal of a diagnostic pathway based on clinical features and neuroimaging findings. Diagnostics (Basel) 2023;13:doi:10.3390/diagnostics13030475 pmid:36766580
    CrossRefPubMed
  91. 91.↵
    1. Bethel JA,
    2. James KM,
    3. Tavakoli SG, et al
    . Supratentorial ependymoma, zinc finger translocation-associated fusion positive, with extensive synaptophysin immunoreactivity arising from malignant transformation of clear cell ependymoma: a case report. Surg Neurol Int 2022;13:168 doi:10.25259/SNI_984_2021 pmid:35509570
    CrossRefPubMed
  92. 92.↵
    1. Tauziède-Espariat A,
    2. Siegfried A,
    3. Nicaise Y, et al
    ; RENOCLIP-LOC, the BIOMECA (Biomarkers for Ependymomas in Children, Adolescents) consortium. Supratentorial non-RELA, ZFTA-fused ependymomas: a comprehensive phenotype genotype correlation highlighting the number of zinc fingers in ZFTA-NCOA1/2 fusions. Acta Neuropathol Commun 2021;9:135 doi:10.1186/s40478-021-01238-y pmid:34389065
    CrossRefPubMed
  93. 93.↵
    1. Pajtler KW,
    2. Witt H,
    3. Sill M, et al
    . Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 2015;27:728–43 doi:10.1016/j.ccell.2015.04.002
    CrossRefPubMed
  94. 94.↵
    1. Mangalore S,
    2. Aryan S,
    3. Prasad C, et al
    . Imaging characteristics of supratentorial ependymomas: study on a large single institutional cohort with histopathological correlation. Asian J Neurosurg 2015;10:276–81 doi:10.4103/1793-5482.162702 pmid:26425155
    CrossRefPubMed
  95. 95.↵
    1. Mu W,
    2. Dahmoush H
    . Classification and neuroimaging of ependymal tumors. Front Pediatr 2023;11:1181211 doi:10.3389/fped.2023.1181211
    CrossRefPubMed
  96. 96.↵
    1. Andreiuolo F,
    2. Varlet P,
    3. Tauziède-Espariat A, et al
    . Childhood supratentorial ependymomas with YAP1-MAMLD1 fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathol 2019;29:205–16 doi:10.1111/bpa.12659 pmid:30246434
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (1)
American Journal of Neuroradiology
Vol. 46, Issue 1
1 Jan 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cortically Based Brain Tumors in Children: A Decision-Tree Approach in the Radiology Reading Room
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
V. Rameh, U. Löbel, F. D’Arco, A. Bhatia, K. Mankad, T.Y. Poussaint, C.A. Alves
Cortically Based Brain Tumors in Children: A Decision-Tree Approach in the Radiology Reading Room
American Journal of Neuroradiology Jan 2025, 46 (1) 11-23; DOI: 10.3174/ajnr.A8477

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Cortical Brain Tumors in Children: Decision-tree
V. Rameh, U. Löbel, F. D’Arco, A. Bhatia, K. Mankad, T.Y. Poussaint, C.A. Alves
American Journal of Neuroradiology Jan 2025, 46 (1) 11-23; DOI: 10.3174/ajnr.A8477
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • SUMMARY:
    • ABBREVIATIONS:
    • DECISION TREE
    • PEDIATRIC DIFFUSE HIGH-GRADE GLIOMAS
    • PEDIATRIC DIFFUSE LOW-GRADE GLIOMAS
    • CIRCUMSCRIBED ASTROCYTIC GLIOMAS
    • GLIONEURONAL AND NEURONAL TUMORS
    • EMBRYONAL TUMORS
    • EPENDYMAL TUMORS
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Multinodular and Vacuolating Neuronal Tumors: Imaging Features, Diagnosis, and Management Challenges
    Rosalinda Calandrelli, Carlo Augusto Mallio, Caterina Bernetti, Fabio Pilato
    Diagnostics 2025 15 3

More in this TOC Section

  • Neuroimaging Delineation and Progression of SLSMD
  • New CNS Embryonal Tumor Insights via MRI Analysis
  • Susceptibility Mapping in Newborn Brain Development
Show more PEDIATRIC NEUROIMAGING

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire