Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain Tumor Imaging

“Synthetic” DSC Perfusion MRI with Adjustable Acquisition Parameters in Brain Tumors Using Dynamic Spin-and-Gradient-Echo Echoplanar Imaging

Francesco Sanvito, Jingwen Yao, Nicholas S. Cho, Catalina Raymond, Donatello Telesca, Whitney B. Pope, Richard G. Everson, Noriko Salamon, Jerrold L. Boxerman, Timothy F. Cloughesy and Benjamin M. Ellingson
American Journal of Neuroradiology February 2025, 46 (2) 311-320; DOI: https://doi.org/10.3174/ajnr.A8475
Francesco Sanvito
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (F.S., J.Y., N.S.C., C.R., B.M.E.), University of California Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (F.S., J.Y., N.S.C., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Francesco Sanvito
Jingwen Yao
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (F.S., J.Y., N.S.C., C.R., B.M.E.), University of California Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (F.S., J.Y., N.S.C., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jingwen Yao
Nicholas S. Cho
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (F.S., J.Y., N.S.C., C.R., B.M.E.), University of California Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (F.S., J.Y., N.S.C., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
cMedical Scientist Training Program (N.S.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
dDepartment of Bioengineering (N.S.C., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nicholas S. Cho
Catalina Raymond
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (F.S., J.Y., N.S.C., C.R., B.M.E.), University of California Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (F.S., J.Y., N.S.C., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Catalina Raymond
Donatello Telesca
eDepartment of Biostatistics (D.T.), University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Whitney B. Pope
bDepartment of Radiological Sciences (F.S., J.Y., N.S.C., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Whitney B. Pope
Richard G. Everson
fDepartment of Neurosurgery (R.G.E., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Noriko Salamon
bDepartment of Radiological Sciences (F.S., J.Y., N.S.C., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Noriko Salamon
Jerrold L. Boxerman
gDepartment of Diagnostic Imaging (J.L.B.), Warren Alpert Medical School, Brown University, Providence, Rhode Island
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jerrold L. Boxerman
Timothy F. Cloughesy
hDepartment of Neurology (T.F.C.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Timothy F. Cloughesy
Benjamin M. Ellingson
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (F.S., J.Y., N.S.C., C.R., B.M.E.), University of California Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (F.S., J.Y., N.S.C., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
dDepartment of Bioengineering (N.S.C., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
fDepartment of Neurosurgery (R.G.E., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
iDepartment of Psychiatry and Biobehavioral Sciences (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Benjamin M. Ellingson
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Shiroishi MS,
    2. Castellazzi G,
    3. Boxerman JL, et al
    . Principles of T2 *-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging 2015;41:296–313 doi:10.1002/jmri.24648 pmid:24817252
    CrossRefPubMed
  2. 2.↵
    1. Zhang J,
    2. Liu H,
    3. Tong H, et al
    . Clinical applications of contrast-enhanced perfusion MRI techniques in gliomas: recent advances and current challenges. Contrast Media Mol Imaging 2017;2017:7064120 doi:10.1155/2017/7064120 pmid:29097933
    CrossRefPubMed
  3. 3.↵
    1. Chakhoyan A,
    2. Yao J,
    3. Leu K, et al
    . Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry. Sci Rep 2019;9:2846 doi:10.1038/s41598-018-37564-w pmid:30808879
    CrossRefPubMed
  4. 4.↵
    1. Semmineh NB,
    2. Xu J,
    3. Skinner JT, et al
    . Assessing tumor cytoarchitecture using multiecho DSC-MRI derived measures of the transverse relaxivity at tracer equilibrium (TRATE). Magn Reson Med 2015;74:772–84 doi:10.1002/mrm.25435
    CrossRefPubMed
  5. 5.↵
    1. Quarles CC,
    2. Gochberg DF,
    3. Gore JC, et al
    . A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation. Phys Med Biol 2009;54:5749–66 doi:10.1088/0031-9155/54/19/006 pmid:19729712
    CrossRefPubMed
  6. 6.↵
    1. Pons-Escoda A,
    2. Garcia-Ruiz A,
    3. Naval-Baudin P, et al
    . Differentiating IDH-mutant astrocytomas and 1p19q-codeleted oligodendrogliomas using DSC-PWI: high performance through cerebral blood volume and percentage of signal recovery percentiles. Eur Radiology 2024;34:5320–30 doi:10.1007/s00330-024-10611-z pmid:38282078
    CrossRefPubMed
  7. 7.↵
    1. Sanvito F,
    2. Raymond C,
    3. Cho NS, et al
    . Simultaneous quantification of perfusion, permeability, and leakage effects in brain gliomas using dynamic spin-and-gradient-echo echoplanar imaging MRI. Eur Radiology 2024;34:3087–101 doi:10.1007/s00330-023-10215-z pmid:37882836
    CrossRefPubMed
  8. 8.↵
    1. Mangla R,
    2. Kolar B,
    3. Zhu T, et al
    . Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. AJNR Am J Neuroradiol 2011;32:1004–10 doi:10.3174/ajnr.A2441 pmid:21511863
    Abstract/FREE Full Text
  9. 9.↵
    1. Leu K,
    2. Ott GA,
    3. Lai A, et al
    . Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II–III diffuse gliomas. J Neurooncol 2017;134:177–88 doi:10.1007/s11060-017-2506-9 pmid:28547590
    CrossRefPubMed
  10. 10.↵
    1. Kickingereder P,
    2. Sahm F,
    3. Radbruch A, et al
    . IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 2015;5:16238–39 doi:10.1038/srep16238 pmid:26538165
    CrossRefPubMed
  11. 11.↵
    1. Sanvito F,
    2. Castellano A,
    3. Falini A
    . Advancements in neuroimaging to unravel biological and molecular features of brain tumors. Cancers (Basel) 2021;13:1–25.doi:10.3390/cancers13030424
    CrossRef
  12. 12.↵
    1. Cho NS,
    2. Hagiwara A,
    3. Sanvito F, et al
    . A multi-reader comparison of normal-appearing white matter normalization techniques for perfusion and diffusion MRI in brain tumors. Neuroradiology 2023;65:559–68 doi:10.1007/s00234-022-03072-y pmid:36301349
    CrossRefPubMed
  13. 13.↵
    1. Cindil E,
    2. Sendur HN,
    3. Cerit MN, et al
    . Prediction of IDH mutation status in high-grade gliomas using DWI and high T1-weight DSC-MRI. Acad Radiology 2022;29:S52–S62 doi:10.1016/j.acra.2021.02.002
    CrossRef
  14. 14.↵
    1. van Dijken BRJ,
    2. van Laar PJ,
    3. Smits M, et al
    . Perfusion MRI in treatment evaluation of glioblastomas: clinical relevance of current and future techniques. J Magn Reson Imaging 2019;49:11–22 doi:10.1002/jmri.26306
    CrossRefPubMed
  15. 15.↵
    1. Prager AJ,
    2. Martinez N,
    3. Beal K, et al
    . Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 2015;36:877–85 doi:10.3174/ajnr.A4218 pmid:25593202
    Abstract/FREE Full Text
  16. 16.↵
    1. Muto M,
    2. Frauenfelder G,
    3. Senese R, et al
    . Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2. Radiology Med 2018;123:545–52 doi:10.1007/s11547-018-0866-7 pmid:29508242
    CrossRefPubMed
  17. 17.↵
    1. Strauss SB,
    2. Meng A,
    3. Ebani EJ, et al
    . Imaging glioblastoma posttreatment: progression, pseudoprogression, pseudoresponse, radiation necrosis. Radiology Clin North Am 2019;57:1199–216 doi:10.1016/j.rcl.2019.07.003
    CrossRef
  18. 18.↵
    1. Shin KE,
    2. Ahn KJ,
    3. Choi HS, et al
    . DCE and DSC MR perfusion imaging in the differentiation of recurrent tumour from treatment-related changes in patients with glioma. Clin Radiology 2014;69:e264-72–e272 doi:10.1016/j.crad.2014.01.016 pmid:24594379
    CrossRefPubMed
  19. 19.↵
    1. Barajas RF,
    2. Chang JS,
    3. Segal MR, et al
    . Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009;253:486–96 doi:10.1148/radiol.2532090007 pmid:19789240
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Lee MD,
    2. Baird GL,
    3. Bell LC, et al
    . Utility of percentage signal recovery and baseline signal in DSC-MRI optimized for relative CBV measurement for differentiating glioblastoma, lymphoma, metastasis, and meningioma. AJNR Am J Neuroradiol 2019;40:1445–50 doi:10.3174/ajnr.A6153 pmid:31371360
    Abstract/FREE Full Text
  21. 21.↵
    1. Cindil E,
    2. Sendur HN,
    3. Cerit MN, et al
    . Validation of combined use of DWI and percentage signal recovery-optimized protocol of DSC-MRI in differentiation of high- grade glioma, metastasis, and lymphoma. Neuroradiology 2021;63:331–42 doi:10.1007/s00234-020-02522-9
    CrossRefPubMed
  22. 22.↵
    1. Wang F,
    2. Zhou X,
    3. Chen R, et al
    . Improved performance of non-preloaded and high flip-angle dynamic susceptibility contrast perfusion-weighted imaging sequences in the presurgical differentiation of brain lymphoma and glioblastoma. Eur Radiology 2023;33:8800–08 doi:10.1007/s00330-023-09917-1
    CrossRefPubMed
  23. 23.↵
    1. Neska-Matuszewska M,
    2. Bladowska J,
    3. Sąsiadek M, et al
    . Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone-Searching for a practical approach. PLoS One 2018;13:e0191341 doi:10.1371/journal.pone.0191341 pmid:29342201
    CrossRefPubMed
  24. 24.↵
    1. Bao S,
    2. Watanabe Y,
    3. Takahashi H, et al
    . Differentiating between glioblastoma and primary CNS lymphoma using combined whole-tumor histogram analysis of the normalized cerebral blood volume and the apparent diffusion coefficient. Magn Reson Med Sci 2019;18:53–61 doi:10.2463/mrms.mp.2017-0135
    CrossRefPubMed
  25. 25.↵
    1. Kickingereder P,
    2. Wiestler B,
    3. Sahm F, et al
    . Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 2014;272:843–50 doi:10.1148/radiol.14132740
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Chaganti J,
    2. Taylor M,
    3. Woodford H, et al
    . Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-derived metrics: pilot study. World Neurosurg 2021;151:e979–e987 doi:10.1016/j.wneu.2021.05.026 pmid:34020062
    CrossRefPubMed
  27. 27.↵
    1. Boxerman JL,
    2. Quarles CC,
    3. Hu LS
    ; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee, et al. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020;22:1262–75 doi:10.1093/neuonc/noaa141 pmid:32516388
    CrossRefPubMed
  28. 28.↵
    1. Sanvito F,
    2. Kaufmann TJ,
    3. Cloughesy TF, et al
    . Standardized brain tumor imaging protocols for clinical trials: current recommendations and tips for integration. Front Radiology 2023;3:1267615 doi:10.3389/fradi.2023.1267615 pmid:38152383
    CrossRefPubMed
  29. 29.↵
    1. Leu K,
    2. Boxerman JL,
    3. Ellingson BM
    . Effects of MRI protocol parameters, preload injection dose, fractionation strategies, and leakage correction algorithms on the fidelity of dynamic-susceptibility contrast MRI estimates of relative cerebral blood volume in gliomas. AJNR Am J Neuroradiol 2017;38:478–84 doi:10.3174/ajnr.A5027 pmid:28034995
    Abstract/FREE Full Text
  30. 30.↵
    1. Shiroishi MS,
    2. Weinert D,
    3. Cen SY, et al
    . A cross-sectional study to test equivalence of low- versus intermediate-flip angle dynamic susceptibility contrast MRI measures of relative cerebral blood volume in patients with high-grade gliomas at 1.5 Tesla field strength. Front Oncol 2023;13:1156843 doi:10.3389/fonc.2023.1156843 pmid:37799462
    CrossRefPubMed
  31. 31.↵
    1. Schmainda KM, et al
    . Moving toward a consensus DSC-MRI protocol: validation of a low-flip angle single-dose option as a reference standard for brain tumors. AJNR Am J Neuroradiol 2019;40:626–33
    Abstract/FREE Full Text
  32. 32.↵
    1. Boxerman JL,
    2. Paulson ES,
    3. Prah MA, et al
    . The effect of pulse sequence parameters and contrast agent dose on percentage signal recovery in DSC-MRI: implications for clinical applications. AJNR Am J Neuroradiol 2013;34:1364–69 doi:10.3174/ajnr.A3477
    Abstract/FREE Full Text
  33. 33.↵
    1. Ellingson BM,
    2. Bendszus M,
    3. Boxerman J
    ; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee, et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 2015;17:1188–98 doi:10.1093/neuonc/nov095 pmid:26250565
    CrossRefPubMed
  34. 34.↵
    1. Schmiedeskamp H,
    2. Straka M,
    3. Newbould RD, et al
    . Combined spin- and gradient-echo perfusion-weighted imaging. Magn Reson Med 2012;68:30–40 doi:10.1002/mrm.23195 pmid:22114040
    CrossRefPubMed
  35. 35.↵
    1. Schmiedeskamp H,
    2. Straka M,
    3. Bammer R
    . Compensation of slice profile mismatch in combined spin- and gradient-echo echo-planar imaging pulse sequences. Magn Reson Med 2012;67:378–88 doi:10.1002/mrm.23012 pmid:21858858
    CrossRefPubMed
  36. 36.↵
    1. Welker K,
    2. Boxerman J,
    3. Kalnin A
    ; American Society of Functional Neuroradiology MR Perfusion Standards and Practice Subcommittee of the ASFNR Clinical Practice Committee, et al. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015;36:E41–E51 doi:10.3174/ajnr.A4341 pmid:25907520
    Abstract/FREE Full Text
  37. 37.↵
    1. Stokes AM,
    2. Bergamino M,
    3. Alhilali L, et al
    . Evaluation of single bolus, dual-echo dynamic susceptibility contrast MRI protocols in brain tumor patients. J Cereb Blood Flow Metab 2021;41:3378–90 doi:10.1177/0271678X211039597 pmid:34415211
    CrossRefPubMed
  38. 38.↵
    1. Leu K,
    2. Boxerman JL,
    3. Cloughesy TF, et al
    . Improved leakage correction for single-echo dynamic susceptibility contrast perfusion MRI estimates of relative cerebral blood volume in high-grade gliomas by accounting for bidirectional contrast agent exchange. AJNR Am J Neuroradiol 2016;37:1440–46 doi:10.3174/ajnr.A4759
    Abstract/FREE Full Text
  39. 39.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    PubMedWeb of Science
  40. 40.↵
    1. Ellingson BM,
    2. Kim HJ,
    3. Woodworth DC, et al
    . Recurrent glioblastoma treated with bevacizumab: contrast-enhanced T1-weighted subtraction maps improve tumor delineation and aid prediction of survival in a multicenter clinical trial. Radiology 2014;271:200–10 doi:10.1148/radiol.13131305 pmid:24475840
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Schober P,
    2. Boer C,
    3. Schwarte LA
    . Correlation coefficients: appropriate use and interpretation. Anesth Analg 2018;126:1763–68 doi:10.1213/ANE.0000000000002864 pmid:29481436
    CrossRefPubMed
  42. 42.↵
    1. Koo TK,
    2. Li MY
    . A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016;15:155–63 doi:10.1016/j.jcm.2016.02.012 pmid:27330520
    CrossRefPubMed
  43. 43.↵
    1. Quarles CC,
    2. Gore JC,
    3. Xu L, et al
    . Comparison of dual-echo DSC-MRI- and DCE-MRI-derived contrast agent kinetic parameters. Magn Reson Imaging 2012;30:944–53 doi:10.1016/j.MRI.2012.03.008
    CrossRefPubMed
  44. 44.↵
    1. Wen PY,
    2. van den Bent M,
    3. Vogelbaum MA, et al
    . RANO 2.0: update to the Response Assessment in Neuro-Oncology criteria for high- and low-grade gliomas in adults. Neuro Oncol 2024;26:2–4 doi:10.1093/neuonc/noad189 pmid:37774741
    CrossRefPubMed
  45. 45.↵
    1. Aronen HJ,
    2. Perkiö J
    . Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am 2002;12:501–23 doi:10.1016/s1052-5149(02)00026-6 pmid:12687908
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Henriksen OM,
    2. Del Mar Álvarez-Torres M,
    3. Figueiredo P, et al
    . High-grade glioma treatment response monitoring biomarkers: a position statement on the evidence supporting the use of advanced MRI techniques in the clinic, and the latest bench-to-bedside developments. Part 1: perfusion and diffusion techniques. Front Oncol 2022;12:810263 doi:10.3389/fonc.2022.810263 pmid:35359414
    CrossRefPubMed
  47. 47.↵
    1. Semmineh NB,
    2. Stokes AM,
    3. Bell LC, et al
    . A population-based digital reference object (DRO) for optimizing dynamic susceptibility contrast (DSC)-MRI methods for clinical trials. Tomogr (Ann Arbor, Mich 2017;3:41–49. doi:10.18383/j.tom.2016.00286
    CrossRefPubMed
  48. 48.↵
    1. Semmineh NB,
    2. Bell LC,
    3. Stokes AM, et al
    . Optimization of acquisition and analysis methods for clinical dynamic susceptibility contrast MRI using a population- based digital reference object. AJNR Am J Neuroradiol 2018;39:1981–88 doi:10.3174/ajnr.A5827 pmid:30309842
    Abstract/FREE Full Text
  49. 49.↵
    1. Stokes AM,
    2. Semmineh NB,
    3. Nespodzany A, et al
    . Systematic assessment of multi-echo dynamic susceptibility contrast MRI using a digital reference object. Magn Reson Med 2020;83:109–23 doi:10.1002/mrm.27914 pmid:31400035
    CrossRefPubMed
  50. 50.↵
    1. Tofts PS,
    2. Brix G,
    3. Buckley DL, et al
    . Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223–32 doi:10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Emblem KE,
    2. Mouridsen K,
    3. Bjornerud A, et al
    . Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 2013;19:1178–83 doi:10.1038/nm.3289
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (2)
American Journal of Neuroradiology
Vol. 46, Issue 2
1 Feb 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
“Synthetic” DSC Perfusion MRI with Adjustable Acquisition Parameters in Brain Tumors Using Dynamic Spin-and-Gradient-Echo Echoplanar Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Francesco Sanvito, Jingwen Yao, Nicholas S. Cho, Catalina Raymond, Donatello Telesca, Whitney B. Pope, Richard G. Everson, Noriko Salamon, Jerrold L. Boxerman, Timothy F. Cloughesy, Benjamin M. Ellingson
“Synthetic” DSC Perfusion MRI with Adjustable Acquisition Parameters in Brain Tumors Using Dynamic Spin-and-Gradient-Echo Echoplanar Imaging
American Journal of Neuroradiology Feb 2025, 46 (2) 311-320; DOI: 10.3174/ajnr.A8475

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Synthetic DSC MRI for Brain Tumors: New Insights
Francesco Sanvito, Jingwen Yao, Nicholas S. Cho, Catalina Raymond, Donatello Telesca, Whitney B. Pope, Richard G. Everson, Noriko Salamon, Jerrold L. Boxerman, Timothy F. Cloughesy, Benjamin M. Ellingson
American Journal of Neuroradiology Feb 2025, 46 (2) 311-320; DOI: 10.3174/ajnr.A8475
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Brain Tumor Subtyping Image-Based search via MRI
  • Neuroimaging of Erdheim-Chester Disease
  • CE MRI for Brain Metastasis Detection
Show more Brain Tumor Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire