Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticlePediatric Neuroimaging

Quantitative Susceptibility Mapping with Source Separation in Normal Brain Development of Newborns

MinJung Jang, Alexey V. Dimov, Kushal Kapse, Jonathan Murnick, Zachary Grinspan, Alan Wu, Arindam RoyChoudhury, Yi Wang, Pascal Spincemaille, Thanh D. Nguyen, Catherine Limperopoulos and Zungho Zun
American Journal of Neuroradiology February 2025, 46 (2) 380-389; DOI: https://doi.org/10.3174/ajnr.A8488
MinJung Jang
aFrom the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexey V. Dimov
aFrom the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kushal Kapse
bInstitute for the Developing Brain (K.K., J.M., C.L.), Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kushal Kapse
Jonathan Murnick
bInstitute for the Developing Brain (K.K., J.M., C.L.), Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC
cDepartment of Pediatrics (J.M., C.L.), School of Medicine and Health Sciences, George Washington University, Washington, DC
dDepartment of Radiology, School of Medicine and Health Sciences (J.M., C.L.), George Washington University, Washington, DC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jonathan Murnick
Zachary Grinspan
eDepartment of Pediatrics (Z.G.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alan Wu
fDepartment of Population Health Sciences (A.W., A.R.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arindam RoyChoudhury
fDepartment of Population Health Sciences (A.W., A.R.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yi Wang
aFrom the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yi Wang
Pascal Spincemaille
aFrom the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Pascal Spincemaille
Thanh D. Nguyen
aFrom the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Thanh D. Nguyen
Catherine Limperopoulos
bInstitute for the Developing Brain (K.K., J.M., C.L.), Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC
cDepartment of Pediatrics (J.M., C.L.), School of Medicine and Health Sciences, George Washington University, Washington, DC
dDepartment of Radiology, School of Medicine and Health Sciences (J.M., C.L.), George Washington University, Washington, DC
gDivision of Fetal and Transitional Medicine (C.L.), Children’s National Hospital, Washington, DC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Catherine Limperopoulos
Zungho Zun
aFrom the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Volpe JJ,
    2. Inder TE,
    3. Darras BT, et al
    . Volpe’s Neurology of the Newborn E-Book. Elsevier Health Sciences; 2017
  2. 2.↵
    1. Brody BA,
    2. Kinney HC,
    3. Kloman AS, et al
    . Sequence of central nervous system myelination in human infancy, I: An autopsy study of myelination. J Neuropathol Exp Neurol 1987;46:283–301 doi:10.1097/00005072-198705000-00005 pmid:3559630
    CrossRefPubMed
  3. 3.↵
    1. Hasegawa M,
    2. Houdou S,
    3. Mito T, et al
    . Development of myelination in the human fetal and infant cerebrum: a myelin basic protein immunohistochemical study. Brain and Development 1992;14:1–6 doi:10.1016/S0387-7604(12)80271-3 pmid:1375444
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Barkovich A,
    2. Kjos B,
    3. Jackson Jr D, et al
    . Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 1988;166:173–80 doi:10.1148/radiology.166.1.3336675 pmid:3336675
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Counsell SJ,
    2. Maalouf EF,
    3. Fletcher AM, et al
    . MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol 2002;23:872–81 pmid:12006296
    PubMedWeb of Science
  6. 6.↵
    1. Kinney HC,
    2. Brody BA,
    3. Kloman AS, et al
    . Sequence of central nervous system myelination in human infancy, II: Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 1988;47:217–34 doi:10.1097/00005072-198805000-00003 pmid:3367155
    CrossRefPubMed
  7. 7.↵
    1. Lebel C,
    2. Gee M,
    3. Camicioli R, et al
    . Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 2012;60:340–52 doi:10.1016/j.neuroimage.2011.11.094 pmid:22178809
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Deoni SC,
    2. Mercure E,
    3. Blasi A, et al
    . Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 2011;31:784–91 doi:10.1523/JNEUROSCI.2106-10.2011 pmid:21228187
    Abstract/FREE Full Text
  9. 9.↵
    1. Nossin-Manor R,
    2. Card D,
    3. Morris D, et al
    . Quantitative MRI in the very preterm brain: assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T1 imaging. Neuroimage 2013;64:505–16 doi:10.1016/j.neuroimage.2012.08.086 pmid:22982360
    CrossRefPubMed
  10. 10.↵
    1. Bilgic B,
    2. Costagli M,
    3. Chan K‐S, et al
    ; QSM Consensus Organization Committee. Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: a consensus of the ISMRM electro-magnetic tissue properties study group. Magn Reson Med 2024;91:1834–62 doi:10.1002/mrm.30006 pmid:38247051
    CrossRefPubMed
  11. 11.↵
    1. Argyridis I,
    2. Li W,
    3. Johnson GA, et al
    . Quantitative magnetic susceptibility of the developing mouse brain reveals microstructural changes in the white matter. Neuroimage 2014;88:134–42 doi:10.1016/j.neuroimage.2013.11.026 pmid:24269576
    CrossRefPubMed
  12. 12.↵
    1. Beaulieu C
    . The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 2002;15:435–55 doi:10.1002/nbm.782 pmid:12489094
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Ning N,
    2. Liu C,
    3. Wu P, et al
    . Spatiotemporal variations of magnetic susceptibility in the deep gray matter nuclei from 1 month to 6 years: a quantitative susceptibility mapping study. J Magn Reson Imaging 2019;49:1600–09 doi:10.1002/jmri.26579 pmid:30569483
    CrossRefPubMed
  14. 14.↵
    1. Zhang Y,
    2. Shi J,
    3. Wei H, et al
    . Neonate and infant brain development from birth to 2 years assessed using MRI-based quantitative susceptibility mapping. Neuroimage 2019;185:349–60 doi:10.1016/j.neuroimage.2018.10.031 pmid:30315906
    CrossRefPubMed
  15. 15.↵
    1. Otani S,
    2. Fushimi Y,
    3. Iwanaga K, et al
    . Evaluation of deep gray matter for early brain development using quantitative susceptibility mapping. Eur Radiol 2023;33:4488–99 doi:10.1007/s00330-022-09267-4 pmid:36418626
    CrossRefPubMed
  16. 16.↵
    1. Dimov AV,
    2. Nguyen TD,
    3. Gillen KM, et al
    . Susceptibility source separation from gradient echo data using magnitude decay modeling. J Neuroimaging 2022;32:852–59 doi:10.1111/jon.13014 pmid:35668022
    CrossRefPubMed
  17. 17.↵
    1. Dimov AV,
    2. Gillen KM,
    3. Nguyen TD, et al
    . Magnetic susceptibility source separation solely from gradient echo data: histological validation. Tomography 2022;8:1544–51 doi:10.3390/tomography8030127 pmid:35736875
    CrossRefPubMed
  18. 18.↵
    1. Shin HG,
    2. Lee J,
    3. Yun YH, et al
    . χ-separation: magnetic susceptibility source separation toward iron and myelin mapping in the brain. Neuroimage 2021;240:118371 doi:10.1016/j.neuroimage.2021.118371 pmid:34242783
    CrossRefPubMed
  19. 19.↵
    1. Chen J,
    2. Gong NJ,
    3. Chaim KT, et al
    . Decompose quantitative susceptibility mapping (QSM) to sub-voxel diamagnetic and paramagnetic components based on gradient-echo MRI data. Neuroimage 2021;242:118477 doi:10.1016/j.neuroimage.2021.118477 pmid:34403742
    CrossRefPubMed
  20. 20.↵
    1. Emmerich J,
    2. Bachert P,
    3. Ladd ME, et al
    . On the separation of susceptibility sources in quantitative susceptibility mapping: theory and phantom validation with an in vivo application to multiple sclerosis lesions of different age. J Magn Reson 2021;330:107033 doi:10.1016/j.jmr.2021.107033 pmid:34303117
    CrossRefPubMed
  21. 21.↵
    1. Wu D,
    2. Chang L,
    3. Akazawa K, et al
    . Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI. Neuroimage 2017;149:33–43 doi:10.1016/j.neuroimage.2017.01.046
    CrossRefPubMed
  22. 22.↵
    1. Yushkevich PA,
    2. Piven J,
    3. Hazlett HC, et al
    . User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116–28 doi:10.1016/j.neuroimage.2006.01.015 pmid:16545965
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Schweser F,
    2. Deistung A,
    3. Lehr BW, et al
    . Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 2011;54:2789–807 doi:10.1016/j.neuroimage.2010.10.070 pmid:21040794
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Li W,
    2. Wu B,
    3. Liu C
    . Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 2011;55:1645–56 doi:10.1016/j.neuroimage.2010.11.088 pmid:21224002
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Liu T,
    2. Wisnieff C,
    3. Lou M, et al
    . Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn Reson Med 2013;69:467–76 doi:10.1002/mrm.24272 pmid:22488774
    CrossRefPubMed
  26. 26.↵
    1. Wang Y,
    2. Liu T
    . Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 2015;73:82–101 doi:10.1002/mrm.25358
    CrossRefPubMed
  27. 27.↵
    1. Avants BB,
    2. Tustison N,
    3. Song G
    . Advanced normalization tools (ANTS). Insight J 2009;2:1–35
  28. 28.↵
    1. Makropoulos A,
    2. Gousias IS,
    3. Ledig C, et al
    . Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 2014;33:1818–31 doi:10.1109/TMI.2014.2322280 pmid:24816548
    CrossRefPubMed
  29. 29.↵
    1. Serag A,
    2. Aljabar P,
    3. Ball G, et al
    . Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Neuroimage 2012;59:2255–65 doi:10.1016/j.neuroimage.2011.09.062
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Brant-Zawadzki M,
    2. Enzmann DR
    . Using computed tomography of the brain to correlate low white-matter attenuation with early gestational age in neonates. Radiology 1981;139:105–08 doi:10.1148/radiology.139.1.7208910 pmid:7208910
    CrossRefPubMed
  31. 31.↵
    1. Siegel GJ
    1. Norton W
    . Formation, structure and biochemistry of myelin. In: Siegel GJ. Basic Neurochemistry. Little, Brown; 1976
  32. 32.↵
    1. Williams LA,
    2. Gelman N,
    3. Picot PA, et al
    . Neonatal brain: regional variability of in vivo MR imaging relaxation rates at 3.0 T–initial experience. Radiology 2005;235:595–603 doi:10.1148/radiol.2352031769 pmid:15858099
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Haacke EM,
    2. Cheng NY,
    3. House MJ, et al
    . Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1–25 doi:10.1016/j.MRI.2004.10.001 pmid:15733784
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Cheepsunthorn P,
    2. Palmer C,
    3. Connor JR
    . Cellular distribution of ferritin subunits in postnatal rat brain. J Comp Neurol 1998;400:73–86
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Connor J,
    2. Menzies S
    . Altered cellular distribution of iron in the central nervous system of myelin deficient rats. Neuroscience 1990;34:265–71 doi:10.1016/0306-4522(90)90320-4 pmid:2325851
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Hallgren B,
    2. Sourander P
    . The effect of age on the non‐haemin iron in the human brain. J Neurochem 1958;3:41–51 doi:10.1111/j.1471-4159.1958.tb12607.x pmid:13611557
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Eun H,
    2. Jeong H,
    3. Lee J, et al
    . A geometric approach to separate the effects of magnetic susceptibility and chemical shift/exchange in a phantom with isotropic magnetic susceptibility. Magn Reson Med 2021;85:281–89 doi:10.1002/mrm.28408 pmid:32643239
    CrossRefPubMed
  38. 38.↵
    1. Luo J,
    2. He X,
    3. d’Avignon DA, et al
    . Protein-induced water 1H MR frequency shifts: contributions from magnetic susceptibility and exchange effects. J Magn Reson 2010;202:102–08 doi:10.1016/j.jmr.2009.10.005 pmid:19879785
    CrossRefPubMed
  39. 39.↵
    1. Shmueli K,
    2. Dodd SJ,
    3. Li TQ, et al
    . The contribution of chemical exchange to MRI frequency shifts in brain tissue. Magn Reson Med 2011;65:35–43 doi:10.1002/mrm.22604 pmid:20928888
    CrossRefPubMed
  40. 40.↵
    1. Zhong K,
    2. Leupold J,
    3. von Elverfeldt D, et al
    . The molecular basis for gray and white matter contrast in phase imaging. Neuroimage 2008;40:1561–66 doi:10.1016/j.neuroimage.2008.01.061 pmid:18353683
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (2)
American Journal of Neuroradiology
Vol. 46, Issue 2
1 Feb 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Susceptibility Mapping with Source Separation in Normal Brain Development of Newborns
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
MinJung Jang, Alexey V. Dimov, Kushal Kapse, Jonathan Murnick, Zachary Grinspan, Alan Wu, Arindam RoyChoudhury, Yi Wang, Pascal Spincemaille, Thanh D. Nguyen, Catherine Limperopoulos, Zungho Zun
Quantitative Susceptibility Mapping with Source Separation in Normal Brain Development of Newborns
American Journal of Neuroradiology Feb 2025, 46 (2) 380-389; DOI: 10.3174/ajnr.A8488

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Susceptibility Mapping in Newborn Brain Development
MinJung Jang, Alexey V. Dimov, Kushal Kapse, Jonathan Murnick, Zachary Grinspan, Alan Wu, Arindam RoyChoudhury, Yi Wang, Pascal Spincemaille, Thanh D. Nguyen, Catherine Limperopoulos, Zungho Zun
American Journal of Neuroradiology Feb 2025, 46 (2) 380-389; DOI: 10.3174/ajnr.A8488
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Comparing MRI Perfusion in Pediatric Brain Tumors
  • Sodium MRI in Pediatric Brain Tumors
  • FRACTURE MR in Congenital Vertebral Anomalies
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire