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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Deep Learning–Based Super-Resolution Reconstruction on
Undersampled Brain Diffusion-Weighted MRI for Infarction

Stroke: A Comparison to Conventional Iterative
Reconstruction

Shuo Zhang, Meimeng Zhong, Hanxu Shenliu, Nan Wang, Shuai Hu, Xulun Lu, Liangjie Lin, Haonan Zhang,
Yan Zhao, Chao Yang, Hongbo Feng, and Qingwei Song

ABSTRACT

BACKGROUND AND PURPOSE: DWI is crucial for detecting infarction stroke. However, its spatial resolution is often limited, hindering
accurate lesion visualization. Our aim was to evaluate the image quality and diagnostic confidence of deep learning (DL)-based super-
resolution reconstruction for brain DWI of infarction stroke.

MATERIALS AND METHODS: This retrospective study enrolled 114 consecutive participants who underwent brain DWI. The DWI
images were reconstructed with 2 schemes: 1) DL-based super-resolution reconstruction (DWIDL); and 2) conventional compressed
sensing reconstruction (DWICS). Qualitative image analysis included overall image quality, lesion conspicuity, and diagnostic
confidence in infarction stroke of different lesion sizes. Quantitative image quality assessments were performed by measure-
ments of SNR, contrast-to-noise ratio (CNR), ADC, and edge rise distance. Group comparisons were conducted by using a
paired t test for normally distributed data and the Wilcoxon test for non-normally distributed data. The overall agreement
between readers for qualitative ratings was assessed by using the Cohen k coefficient. A P value less than .05 was considered
statistically significant.

RESULTS: A total of 114 DWI examinations constituted the study cohort. For the qualitative assessment, overall image quality, lesion
conspicuity, and diagnostic confidence in infarction stroke lesions (lesion size,1.5 cm) improved by DWIDL compared with DWICS
(all P , .001). For the quantitative analysis, edge rise distance of DWIDL was reduced compared with that of DWICS (P , .001), and
no significant difference in SNR, CNR, and ADC values (all P . .05).

CONCLUSIONS: Compared with the conventional compressed sensing reconstruction, the DL-based super-resolution reconstruc-
tion demonstrated superior image quality and was feasible for achieving higher diagnostic confidence in infarction stroke.

ABBREVIATIONS: CNN ¼ convolutional neural network; CNR ¼ contrast-to-noise ratio; CS ¼ compressed sensing; DL ¼ deep learning;; DWICS ¼ conven-
tional compressed sensing reconstruction; DWIDL ¼ DL-based super-resolution reconstruction; ERD ¼ edge rise distance; IQR ¼ interquartile range

DWI, a powerful MRI tool, is indispensable for the early
detection and characterization of ischemic strokes.1 Ischemic

strokes, resulting from the occlusion of intracranial blood vessels,
lead to a decreased blood supply to specific brain regions. This
deprivation of oxygen and nutrients, along with impaired waste
elimination, triggers the cessation of normal neuronal function,
potentially progressing to necrosis and permanent infarction

if left untreated.2,3 The unique capability of DWI to detect the
diffusion movement of water molecules within tissue provides
invaluable insights into the pathophysiologic states of the
brain, offering signals that are not captured by conventional
MRI sequences. Specifically, DWI can reveal the extent of
water molecule diffusion, which is altered in the presence of
ischemic injury, enabling the earlier detection of signal abnor-
malities in infarct lesions and enhancing the diagnostic rate
for hyperacute cerebral infarction in clinical settings.4-6

Conventional DWI, which relies on EPI acquisition, often
exhibits limited spatial resolution compared with other rou-
tine neuroimaging modalities, which is due to the heightened
sensitivity of DWI to B0 inhomogeneities and the stringent
requirements for magnetic field gradient hardware. These
limit the ability of DWI to visualize and analyze brain tissues
with precision, particularly in the context of diseases that
require high-quality imaging. To address these challenges,
various reconstruction techniques have been developed to
enhance the image quality of DWI, including parallel imaging
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and compressed sensing (CS), which can help reduce the geo-
metric distortion and increase the SNRs for DWI.7,8

More recently, the deep learning (DL)-based reconstruction
algorithms have also been introduced for improved image quality
of MRI through denoising and/or super-resolution reconstruc-
tion.9-11 DL-based super-resolution reconstruction has shown
promise in various applications,12-14 including DWI of the
prostate15 and whole spine.16 However, the application of these
techniques to brain DWI remains relatively underexplored,
presenting a significant opportunity for advancement in neuro-
logic diagnostics.

The primary objective of this study is to evaluate per-
formance of the DL-based super-resolution reconstruction
on randomly undersampled brain DWI data. Specifically,
this study aims to assess the efficacy of DL-based super-resolu-
tion reconstruction in improving image quality and diagnosis
confidence for infarction stroke compared with conventional
reconstruction.

MATERIALS AND METHODS
Study Participants
This retrospective study obtained approval from the institutional
review board of The First Affiliated Hospital of Dalian Medical
University (Approval No. PJ-KS-KY-2023–261). The study en-
rolled consecutive patients who underwent brain MRI for
screening of stroke from September to December 2023. Exclusion
criteria included incorrect technical parameters, incomplete
reconstructions, poor image quality, and lesions that could poten-
tially interfere with normal tissue signal measurements (Fig 1).

Brain MRI
Brain MRI was conducted at a 3T scanner (Ingenia CX, Philips
Healthcare) by using a 32-channel head coil. MRI scans included
T2WI, T1WI, FLAIR, and DWI. DWI was acquired based on the
single-shot EPI sequence with 2 b-values (0 and 1000 s/mm2)
with a randomly undersampling factor of 2 in the phase-encoding
direction and a 24-second acquisition duration.

All DWI data underwent reconstruction by using 2 methods:
1) DL-based super-resolution reconstruction (DWIDL) and 2)
conventional compressed sensing reconstruction (DWICS).

CS utilizes the algorithm presented in Equation 1, which is
primarily based on the method outlined by Lustig and Pauley17:
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Here, p represents the image being reconstructed; md;i is the
measured data for each coil element following noise decorrela-
tion; E is the undersampling Fourier operator determined by the
sampling scheme; Sd;i denotes the coil sensitivity for each element
after noise decorrelation, obtained via the SENSE reference scan;
l1 is a regularization parameter that mediates between data fidel-
ity and prior image information; R involves the coarse-resolution
data from the integrated body coil, derived from the SENSE refer-
ence scan and used to guide the regularization; l2 is a regulariza-
tion factor controlling the trade-off between sparsity and data
consistency in the iterative process; and W denotes the sparsity
transform into the wavelet domain.

The DL super-resolution reconstruction algorithm,18,19 pro-
vided by Philips Healthcare, was utilized, with only nonindustry-
affiliated authors having complete access to and control over the
data used in this study. This DL-driven reconstruction approachFIG 1. Study flow diagram.

SUMMARY

PREVIOUS LITERATURE: Deep learning reconstruction has been effective in enhancing image quality in multiple MRI sequences,
but its application in super-resolution reconstruction for brain DWI in diagnosing infarction stroke is uncertain.

KEY FINDINGS: The study used a DL-based super-resolution reconstruction technique for brain DWI, which improved overall
image quality and diagnostic confidence for infarction stroke compared with traditional DWI reconstructed by compressed
sensing.

KNOWLEDGE ADVANCEMENT: Super-resolution reconstruction for brain DWI by using the DL-based method has potential value
for early detection of microinfarct lesions and thus provides accurate imaging information for clinical thrombolytic therapy.
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leverages 2 convolutional neural networks (CNNs), starting with
Adaptive-CS-Net,20 which is capable of reconstructing images
from nonuniformly randomly subsampled MRI data. This CNN
is applied before coil combination to remove noise from the
images, thus ensuring the preservation of high image quality
from the expedited acquisition process. An extra network, termed
Precise-Image-Net, has been previously evaluated on prostate
DWI and T2WI19,21 as a replacement for the traditional zero-fill-
ing strategy, aiming to increase the image matrix size and thereby
enhance image sharpness. Precise-Image-Net is an artificial intel-
ligence model designed to remove ringing artifacts and is catego-
rized as a Super Resolution network. It is trained on 6 million
pairs of images, comprising low- and high-resolution data with
k-space crops to induce ringing. Data consistency checks are
implemented to ensure that the resulting k-space aligns with the
measured k-space data. The full reconstruction pipeline utilizing
Precise-Image-Net generates images with improved SNR and
sharpness, higher matrix size, and reduced ringing artifacts,
making it applicable to all 2D Cartesian acquisitions.22,23 Fig 2
provides a graphic representation of the MRI chain, offering a
detailed perspective on the reconstruction pipeline. DWIDL
reconstruction procedures last approximately 42 seconds, by
using the NVIDIA RTX5000 GPU, while the image reconstruc-
tion procedure will not impact the data acquisition of subse-
quent MRI sequences.

Qualitative Image Analysis
Qualitative analysis was independently conducted by 2 experi-
enced radiologists (N.W. and S.H., with 5 and 6 years of exper-
tise in evaluating brain MRI, respectively). The readers were
blinded to reconstruction methods, and no washout period was

implemented between qualitative evaluations. Categories assessed
for both DWICS and DWIDL included artifacts (motion, partial
volume, and susceptibility artifacts), image sharpness (comprising
white matter, gray matter, and CSF spaces), and overall image qual-
ity (providing a general impression of the image). Additionally,
readers reported on lesion conspicuity (identifying suspicious
lesions) and lesion measurements (accurate delineation of lesion
boundaries within the brain). A 5-point Likert scale ranging from
no confidence (1 point) to very high confidence (5 points) was used.

Quantitative Image Analysis
Quantitative analysis involved the calculation of the apparent
SNR (signal intensity in WM or GM divided by the signal stand-
ard deviation of CSF) and the apparent contrast-to-noise ratio
(CNR, [signal intensity of WM or GM minus signal intensity of
CSF] divided by the standard deviation of CSF). The analysis
focused on the slice level of the corpus callosum and the caudate
nucleus. A circular ROI (20 mm2) was placed within homogene-
ous and artifact-free zones of these 2 cerebral structures on DWI
(b-value of 1000 s/mm2) with and without DL-based super-reso-
lution reconstruction. The same ROIs were utilized to determine
the ADC values of the corpus callosum and caudate nucleus on
the ADC map.

Image sharpness was assessed through the determination of
the edge rise distance (ERD), defined as the distance between
points corresponding to 10% and 90% of the maximum intensity
value.24-26 Smaller ERD values were indicative of superior sharp-
ness. ERD measurements on the DWI (b-value of 1000 s/mm2) at
the interface between brain parenchyma and CSF were conducted
by a technician (M.Z.), utilizing the ImageJ software (https://
imagej.net/ij/). The particle analysis tool, specifically the Plot

FIG 2. Reconstruction pipeline and quantitative evaluation method diagram.
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Profile function, was used to generate profile curves. Fig 2 demon-
strates ROI examples and the measurement methods.

Diagnostic Confidence in Infarction Stroke Assessment
Lesions of various sizes were included to evaluate the diag-
nostic confidence of infarction stroke assessment. The radiol-
ogists were blinded to both the participant and the DWI
method used. For each lesion, the radiologists were provided
with routine MRI, and DWI with a b-value of 1000 s/mm2 and
ADC maps from both DWICS and DWIDL, presented axially in
a random order. The readers measured the maximum diameter
of infarction lesions on 2D cross-sections of DWI (b¼ 1000
seconds/mm2) and calculated lesion-average ADC by using a
freehand 2D ROI on a representative section for lesion size
categorization. Readers reported their diagnostic confidence
in infarction assessment. A Likert scale was used to assess
each category.

Statistical Analysis
The statistical analysis was conducted by using SPSS (Version 27;
IBM). Continuous variables representing quantitative measure-
ments are presented as means 6 standard deviation, while
discrete variables for qualitative assessment are reported as
medians with interquartile range (IQR). Group comparisons
between DWIDL and DWICS were conducted by using a
paired t test for normally distributed data and the Wilcoxon
test for non-normally distributed data.

The overall agreement between readers for qualitative ratings
was assessed by using the Cohen k coefficient (,0.5¼ poor; 0.5
to ,0.75¼moderate; 0.75 to ,0.9¼ good; $0.9¼ excellent).
Intrareader reproducibility for quantitative analysis of SNR,
CNR, ADC, and ERD was evaluated in a randomly chosen subset
of 10 participants, utilizing the 2-way mixed absolute agreement

intraclass correlation coefficient (poor: ,0.5; moderate: 0.5
to,0.75; good: 0.75 to,0.9; excellent:$0.9). Descriptive statis-
tics and visual diagrams were used to illustrate results for direct
comparisons. A P value less than .05 was considered statistically
significant.

RESULTS
Clinical Characteristics of Participants
After excluding 4 participants with incorrect imaging parameters,
5 participants with incomplete reconstructed DWI, 3 participants
with poor image quality, and 2 participants with lesions that
could potentially interfere with normal tissue signal measure-
ments, a total of 114 participants, with a mean age of 596 17 years
(ranging from 20 to 94 years), were finally included in this study.
Detailed participant characteristics are provided in Table 1.

Comparison of Qualitative Image Evaluations
On the 5-point Likert scale for image quality, when compared
with DWICS, DWIDL achieved higher reader scores for the quali-
tative assessment of image sharpness (reader-averaged median
score, 4 [IQR, 4–4] versus 3 [IQR, 3–3], P, .001), lesion conspi-
cuity (reader-averaged median score, 4 [IQR, 3–4] versus 3 [IQR,
3–4], P , .001), and lesion size measurements (reader-averaged
median score, 4 [IQR, 4–4] versus 3 [IQR, 3–3], P , .001), as
shown in Table 2. For the assessment of image artifacts and over-
all image quality, DWIDL images received an average of 0.3 and
0.2 points higher than DWICS (both P, .001).

Cohen k demonstrated moderate to good agreement across
all qualitative categories assessed, ranging from 0.59 to 0.88.
Average qualitative scores of the 2 readers and 95% CI for each
category are reported in Table 2, respectively. Representative par-
ticipant images are displayed in Fig 3 and 4.

Comparison of Quantitative Image Evaluations
The SNR of DWIDL was 24.1 6 10.3 for WM and 27 6 12.3 for
GM, showing no significant difference to those of DWICS (25.16
10 for WM and 27.76 11.5 for GM; P ¼ .138 and 0.264, respec-
tively). Similarly, the CNR of DWIDL (17.6 6 8.6 for WM and
20.4 6 10.5 for GM) did not exhibit a significant difference from
those of DWICS (18.5 6 8.4 for WM and 21.2 6 9.9 for GM;
P ¼ .066 and 0.174, respectively). The mean ADC for WM
was 0.8 6 0.04 mm2/s and for GM was 0.72 6 0.5 mm2/s for
DWIDL demonstrating no significant difference compared
with DWICS (0.8 6 0.04 mm2/s for WM and 0.73 6 0.5 mm2/s
for GM; P ¼ .136 and 0.67, respectively). The mean ERD was
lower for DWIDL (11.09 6 5.10 px) compared with DWICS

(13.17 6 5.50 px; P , .001). Fig 5
show comparisons of all of these quan-
titative evaluations.

The intraclass correlation coefficient
for intrareader reproducibility of quan-
titative measurements was good for ERD
(0.77 [95% CI: 0.43–0.91]), SNR (0.82
[95% CI: 0.66–0.91]), and CNR (0.85
[95% CI: 0.72–0.92]), and excellent for
ADC value (0.987 [95% CI: 0.98–0.99]).

Table 1: Clinical characteristics of enrolled participantsa

Variable Value
No. of participants 114
Age (y)b 59 6 17
Sex

Female 55
Male 59

Patients with brain ischemic stroke
Acute 22 (19.3)
Chronic 39 (34.2)

Healthy subjects 53 (46.4)
a Unless otherwise specified, data are numbers of participants, with percentages
in parentheses.
b Data are means 6 standard deviations.

Table 2: Qualitative image evaluation ratings based on the average score assigned by 2
readersa

Category DWICS DWIDL j-valueb P
Image artifacts 3 (2–3) 3 (3–3) 0.82 (0.71–0.91) ,.001
Image sharpness 3 (3–3) 4 (4–4) 0.88 (0.81–0.92) ,.001
Overall image quality 4 (4–4) 4 (4–4) 0.59 (0.41–0.75) ,.001
Lesion conspicuity 3 (3–4) 4 (3–4) 0.76 (0.55–0.91) ,.001
Lesion size measurements 3 (3–3) 4 (4–4) 0.85 (0.7–0.96) ,.001

a Unless otherwise specified, data are medians, with IQRs in parentheses. A 5-point Likert scale was used for each
category (1¼ nondiagnostic to 5¼ excellent).
b Data in parentheses are 95% CIs.
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FIG 4. (A) T2WI and (B) FLAIR image for assessment of an acute cerebral infarction in a 70-year-old female patient. (C–D) DWI (b¼ 1000s/mm2)
for DWICS image and DWIDL image, respectively; (E–F) ADC maps for DWICS and DWIDL, respectively.

FIG 3. (A) T2WI and (B) FLAIR image for assessment of an acute cerebral infarction in a 35-year-old female patient. (C–D) DWIs (b¼ 1000 s/mm2)
for DWICS image and DWIDL image, respectively; (E–F) ADC maps for DWICS and DWIDL, respectively.
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Comparison of Diagnostic Confidence of Infarction Stroke
For the diagnostic confidence of infarction stroke assessment,
when compared with DWICS, DWIDL achieved an averaged
reader score of 4 or higher, for lesion sizes,0.5 cm and 0.5–1.5
cm (reader-averaged median score, 4 [IQR, 4–4] versus 3 [IQR,
3–3], 5 [IQR, 4–5] versus 4 [IQR, 4–4], respectively; both P, .001).

For lesion sizes 1.6–3.0 cm, the average score of reader 2 differed
between DWIDL and DWICS (reader-averaged median score, 5 [IQR,
5–5] versus 5 [IQR, 4–5]; P¼ .03), while there is no difference in the
average score of reader 1 between DWIDL and DWICS (reader-aver-
aged median score, 5 [IQR, 5–5] versus 5 [IQR, 4–5]; P¼ .05). There
was no significant difference between DWIDL and DWICS in the 2

FIG 5. A comparison of apparent SNR, CNR, ADC, and ERD between DWICS and DWIDL. No significant difference was observed in SNR and CNR
between DWIDL; There were no significant difference between DWIDL and DWICS in the ADC values. The mean ERD of DWIDL was lower than
DWICS. Horizontal dotted lines indicate the mean values. The statistically significant level, ***P, .001.

Table 3: Diagnostic confidence of infarction stroke of reader 1
(n=119)a

Diagnostic Confidence Scores

DWICS DWIDL P
Lesion size ,0.5 cm (n¼81) 3 (3–3) 4 (4–4) ,.001
Lesion size 0.5–1.5 cm (n¼18) 4 (4–4) 5 (4–5) ,.001
Lesion size 1.6–3.0 cm (n¼10) 5 (4–5) 5 (5–5) .05
Lesion size 3.1–5.0 cm (n¼5) 5 (4–5) 5 (5–5) .32
Lesion size .5.0 cm (n¼5) 5 (4–5) 5 (5–5) .32

a Unless otherwise specified, data are medians, with IQRs in parentheses. A 5-
point Likert scale was used for each category (1¼ nondiagnostic to 5¼ excellent).
Cohen k for agreement between diagnostic confidence of infarction ratings of the
2 readers was good (lesion size .5.0 cm, 1 [95% CI: 1–1]; lesion size 3.0–5.0 cm, 0.78
[95% CI: 0.28–1]; lesion size 1.5–3.0 cm, 0.69 [95% CI: 0.31–1]; lesion size 0.5–1.5 cm,
0.89 [95% CI: 0.87–1]; lesion size,0.5 cm, 0.86 [95% CI: 0.79–0.94], respectively).

Table 4: Diagnostic confidence of infarction stroke of reader 2
(n=119)a

Diagnostic Confidence Scores

DWICS DWIDL P
Lesion size ,0.5 cm (n¼81) 3 (3–3) 4 (4–4) ,.001
Lesion size 0.5–1.5 cm (n¼18) 4 (4–4) 5 (4–5) ,.001
Lesion size 1.6–3.0 cm (n¼10) 5 (4–5) 5 (5–5) .03
Lesion size 3.1–5.0 cm (n¼5) 5 (4–5) 5 (5–5) .16
Lesion size .5.0 cm (n¼5) 5 (4–5) 5 (5–5) .32

a Unless otherwise specified, data are medians, with IQRs in parentheses. A 5-
point Likert scale was used for each category (1¼ nondiagnostic to 5¼ excellent).
Cohen k for agreement between diagnostic confidence of infarction ratings of the
2 readers was good (lesion size .5.0 cm, 1 [95% CI: 1–1]; lesion size 3.0–5.0 cm, 0.78
[95% CI: 0.28–1]; lesion size 1.5–3.0 cm, 0.69 [95% CI: 0.31–1]; lesion size 0.5–1.5 cm,
0.89 [95% CI: 0.87–1]; lesion size,0.5 cm, 0.86 [95% CI: 0.79–0.94], respectively).
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reader-averaged diagnostic confidence of infarction stroke scores,
3.1–5.0 cm and .5.0 cm (reader-averaged median score 5 [IQR,
5–5] versus 5 [IQR, 4–5] for all, P. .05 for all) (Table 3 and 4).

DISCUSSION
In this study, a recently introduced DL super-resolution recon-
struction technique was used for in-brain DWI, and both qualita-
tive and quantitative comparisons were made with traditional
DWI reconstructed by compressed sensing. The secondary
objective aimed to assess the diagnostic performance of brain
DWI reconstructed with DL for infarction stroke. Results
indicated that DL reconstruction improved overall image
quality and diagnostic confidence of infarction stroke (lesion
size ,0.5 cm and 0.5–1.5 cm) with DWIDL in comparison with
DWICS (all P, .001).

Traditional MRI reconstruction usually uses complicated
mathematical methods and involves complex processes, such as
the wavelet transformation for denoising in compressed sensing
reconstruction.27-29 However, new methods are emerging to
streamline MRI reconstruction protocols. For example, a recent
study suggested that combining random undersampling with
DL denoising (Adaptive-CS-Net) can enhance the image quality
of MRI compared with using compressed sensing reconstruc-
tion.30 Our study reveals that the addition of an extra neural net-
work18,19 to enhance image resolution further contributes to
improved image quality. This improvement is demonstrated
both qualitatively, through image sharpness, and quantitatively,
as evidenced by the ERD.

In contrast to other acceleration techniques that may compro-
mise image quality, such as partial Fourier acquisition and paral-
lel imaging,30,31 the super-resolution network used in our study
improved lesion observation without compromising apparent
SNR and apparent CNR. Specifically, in lesion conspicuity scor-
ing, DL reconstruction enhanced lesion conspicuity compared
with CS reconstruction DWI. The SNR, CNR, and ADC values of
DWIDL showed no significant differences compared with those of
DWICS. Notably, DWIDL increased confidence in lesion measure-
ments compared with traditional DWI.

Super-resolution reconstruction for brain DWI has significant
potential value for diagnosing lesions smaller than 0.5 cm, offer-
ing the chance to discover acute cerebral infarction and strive for
the best treatment time. At the same time, it can also provide
more intuitive and accurate imaging information for clinical
thrombolytic therapy. Results of the current study show that, as
infarct lesions decrease in size, the difference in diagnostic confi-
dence between DWIDL and DWICS becomes more pronounced.
This score variation may facilitate early detection of microinfarct
lesions, potentially averting oversight, especially in subcortical
infarcts that are prone to being overlooked.

Our study has several limitations. First, our study lacks a
standard imaging method to validate the diffusion-restricted
lesions detected by our DL reconstruction approach. Second,
expert readers were employed for subjective image quality assess-
ments, and despite variations in the interpretations of the 5-point
Likert scale, the consistency of differences between various imag-
ing methods was maintained. For quantitative evaluations, man-
ual measurements of ROIs may introduce errors, leading to biased

results. Third, our study exclusively focused on DL super-resolu-
tion reconstruction of DWI, primarily associated with acute ische-
mic stroke assessment. However, in most chronic cases, FLAIR
imaging is equally important.32 Because the fundamental princi-
ples of the DL reconstruction method are not restricted to the
DWI sequence, further evaluation is necessary for its application
to different weighted sequences. Fourth, a more diverse study
sample is needed to evaluate the detection rate thoroughly.
Despite these limitations, it is noteworthy that our retrospective
analysis of all patients with strokes showed no instances of
missed or fabricated lesions in the DL-reconstructed images
compared with conventional compressed sensing images, and
instead, they notably improved the visibility of lesions, particu-
larly smaller ones. Future studies should address these limita-
tions by broadening the study’s scope to encompass other
imaging sequences, and enrolling a more diverse patient popula-
tion. Additionally, it is crucial to use follow-up imaging or clini-
cal correlation to validate the detected lesions.

CONCLUSIONS
We used a newly developed DL-reconstruction method to enhance
image resolution and compared it with traditional compressed
sensing reconstruction for brain DWI. Due to the improved
image resolution, this method may assist in early detection of
small infarcts, allowing for timely intervention in such patients.
However, the exact impact of this technology on the accuracy of
head DWI requires further assessment. Additionally, the impact
of this technique on DWI in different anatomic regions remains
unclear and warrants in-depth investigation.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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