More articles from SPINE
- Anatomy of the Great Posterior Radiculomedullary Artery
The authors describe the microsurgical anatomy of the great posterior radiculomedullary artery with emphasis on its morphometric parameters as well as its implications for spinal cord blood supply. The artery of Adamkiewicz in spinal cord specimens (n = 50) was injected with colored latex until the small-caliber arterial vessels were filled and the great posterior radiculomedullary artery was identified. The course, diameter, and location of great posterior radiculomedullary artery were documented. A great posterior radiculomedullary artery was identified in 36 (72%) spinal cord specimens. In 11 (22%) specimens, bilateral great posterior radiculomedullary arteries were present. In 13 cases (26%), a unilateral left-sided great posterior radiculomedullary artery was identified. In 11 cases (22%), a unilateral right-sided great posterior radiculomedullary artery was identified.
- Armed Kyphoplasty: An Indirect Central Canal Decompression Technique in Burst Fractures
This study assesses the results of armed kyphoplasty using vertebral body stents or the SpineJack in traumatic, osteoporotic, and neoplastic burst fractures with respect to vertebral body height restoration and correction of posterior wall retropulsion. The authors performed a retrospective assessment of 53 burst fractures with posterior wall retropulsion and no neurologic deficit in 51 consecutive patients treated with armed kyphoplasty. Posterior wall retropulsion and vertebral body height were measured on pre- and postprocedural CT. Armed kyphoplasty was performed as a stand-alone treatment in 43 patients, combined with posterior instrumentation in 8 and laminectomy in 4. Pre-armed kyphoplasty and post-armed kyphoplasty mean posterior wall retropulsion was 5.8 and 4.5 mm, respectively, and mean vertebral body height was 10.8 and 16.7 mm, respectively. They conclude that in the treatment of burst fractures with posterior wall retropulsion and no neurologic deficit, armed kyphoplastyyields fracture reduction, internal fixation, and indirect central canal decompression.
- Comparison of [18F] FDG-PET/MRI and Clinical Findings for Assessment of Suspected Lumbar Facet Joint Pain: A Prospective Study to Characterize Candidate Nonanatomic Imaging Biomarkers and Potential Impact on Management
Ten patients with clinically suspected facetogenic low back pain were prospectively recruited with a designation of specific facet joints implicated clinically. Subsequently, patients underwent an FDG-PET/MR imaging examination with gadolinium. Each facet joint was graded for perifacet signal change on MR imaging and FDG activity. The frequency and correlation of MR imaging, FDG-PET, and clinical findings were determined. There was low concordance of perifacet signal change and FDG activity with clinically implicated facet joints. This could indicate either the potential to change patient management or a lack of biomarker accuracy.
- Automatic Spinal Cord Gray Matter Quantification: A Novel Approach
The authors assessed the reproducibility and accuracy of cervical spinal cord gray matter and white matter cross-sectional area measurements using magnetization inversion recovery acquisition images and a fully automatic postprocessing segmentation algorithm. The cervical spinal cord of 24 healthy subjects was scanned in a test-retest fashion on a 3T MR imaging system. Twelve axial averaged magnetization inversion recovery acquisition slices were acquired over a 48-mm cord segment. GM and WM were both manually segmented by 2 experienced readers and compared with an automatic variational segmentation algorithm with a shape prior modified for 3D data with a slice similarity prior. Reproducibility was high for both methods, while being better for the automatic approach. The accuracy of the automatic method compared with the manual reference standard was excellent. They conclude that the fully automated postprocessing segmentation algorithm demonstrated an accurate and reproducible spinal cord GM and WM segmentation.
- Comparative Analysis of Volumetric High-Resolution Heavily T2-Weighted MRI and Time-Resolved Contrast-Enhanced MRA in the Evaluation of Spinal Vascular Malformations
The authors compared the efficacy of volumetric high-resolution heavily T2-weighted and time-resolved contrast-enhanced images in spinal vascular malformation diagnosis and feeder characterization and assessed whether a combined evaluation improved the overall accuracy of diagnosis in 28 patients. Both sequences demonstrated 100% sensitivity and 93.5% accuracy for the detection of spinal vascular malformations. Volumetric high-resolution heavily T2-weighted imaging was superior to time-resolved contrast-enhanced MR imaging for identification of spinal cord arteriovenous malformations while the opposite was observed for perimedullary arteriovenous fistulas. Both sequences showed equal sensitivity (100%) and accuracy (87%) for spinal dural arteriovenous fistulas. They conclude that combined volumetric high-resolution heavily T2-weighted imaging and time-resolved contrast-enhanced MR imaging can improve the sensitivity and accuracy of spinal vascular malformation diagnosis, classification, and feeder characterization.