Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeurointervention
Open Access

3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT

J.C. Montoya, Y. Li, C. Strother and G.-H. Chen
American Journal of Neuroradiology March 2018, DOI: https://doi.org/10.3174/ajnr.A5597
J.C. Montoya
aFrom the Departments of Medical Physics (J.C.M., Y.L., G.-H.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.C. Montoya
Y. Li
aFrom the Departments of Medical Physics (J.C.M., Y.L., G.-H.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Li
C. Strother
bRadiology (C.S., G.-H.C.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Strother
G.-H. Chen
aFrom the Departments of Medical Physics (J.C.M., Y.L., G.-H.C.)
bRadiology (C.S., G.-H.C.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.-H. Chen
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Go AS,
    2. Mozaffarian D,
    3. Roger VL, et al
    ; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 2013;127:143–52 doi:10.1161/CIR.0b013e318282ab8f pmid:23283859
    FREE Full Text
  2. 2.↵
    1. Wiebers DO
    . Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003;362:103–10 doi:10.1016/S0140-6736(03)13860-3 pmid:12867109
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Mohr JP,
    2. Parides MK,
    3. Stapf C, et al
    ; international ARUBA investigators. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 2014;383:614–21 doi:10.1016/S0140-6736(13)62302-8 pmid:24268105
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Ogilvy CS,
    2. Stieg PE,
    3. Awad I, et al
    ; Special Writing Group of the Stroke Council, American Stroke Association. AHA scientific statement: recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke 2001;32:1458–71 doi:10.1161/01.STR.32.6.1458 pmid:11387517
    FREE Full Text
  5. 5.↵
    1. Hacein-Bey L,
    2. Provenzale JM
    . Current imaging assessment and treatment of intracranial aneurysms. AJR Am J Roentgenol 2011;196:32–44 doi:10.2214/AJR.10.5329 pmid:21178044
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Anxionnat R,
    2. Bracard S,
    3. Ducrocq X, et al
    . Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 2001;218:799–808 doi:10.1148/radiology.218.3.r01mr09799 pmid:11230659
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Gandhi D,
    2. Chen J,
    3. Pearl M, et al
    . Intracranial dural arteriovenous fistulas: classification, imaging findings, and treatment. AJNR Am J Neuroradiol 2012;33:1007–13 doi:10.3174/ajnr.A2798 pmid:22241393
    Abstract/FREE Full Text
  8. 8.↵
    1. Fahrig R,
    2. Fox AJ,
    3. Lownie S, et al
    . Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results. AJNR Am J Neuroradiol 1997;18:1507–14 pmid:9296192
    Abstract
  9. 9.↵
    1. Reiser MF,
    2. Becker CR,
    3. Nikolaou K, et al.
    1. Strobel N,
    2. Meissner O,
    3. Boese J, et al
    . 3D imaging with flat-detector C-arm systems. In: Reiser MF, Becker CR, Nikolaou K, et al., eds. Multislice CT. Berlin: Springer-Verlag; 2009:33–51
  10. 10.↵
    1. Erickson BJ,
    2. Korfiatis P,
    3. Akkus Z, et al
    . Machine learning for medical imaging. Radiographics 2017;37:505–15 doi:10.1148/rg.2017160130 pmid:28212054
    CrossRefPubMed
  11. 11.↵
    1. Chan HP,
    2. Lo SC,
    3. Sahiner B, et al
    . Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network. Med Phys 1995;22:1555–67 doi:10.1118/1.597428 pmid:8551980
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Wu Y,
    2. Doi K,
    3. Giger ML, et al
    . Computerized detection of clustered microcalcifications in digital mammograms: applications of artificial neural networks. Med Phys 1992;19:555–60 doi:10.1118/1.596845 pmid:1508089
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Zhang W,
    2. Doi K,
    3. Giger ML, et al
    . Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med Phys 1994;21:517–24 doi:10.1118/1.597177 pmid:8058017
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Wang S,
    2. Summers RM
    . Machine learning and radiology. Med Image Anal 2012;16:933–51 doi:10.1016/j.media.2012.02.005 pmid:22465077
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. LeCun Y,
    2. Bengio Y,
    3. Hinton G
    . Deep learning. Nature 2015;521:436–44 doi:10.1038/nature14539 pmid:26017442
    CrossRefPubMed
  16. 16.↵
    1. Gulshan V,
    2. Peng L,
    3. Coram M, et al
    . Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402–10 doi:10.1001/jama.2016.17216 pmid:27898976
    CrossRefPubMed
  17. 17.↵
    1. Huynh BQ,
    2. Li H,
    3. Giger ML
    . Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging (Bellingham) 2016;3:034501 doi:10.1117/1.JMI.3.3.034501 pmid:27610399
    CrossRefPubMed
  18. 18.↵
    1. Antropova N,
    2. Huynh BQ,
    3. Giger ML
    . A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 2017;44:5162–71 doi:10.1002/mp.12453 pmid:28681390
    CrossRefPubMed
  19. 19.↵
    1. Akkus Z,
    2. Galimzianova A,
    3. Hoogi A, et al
    . Deep learning for brain MRI segmentation: state of the art and future directions. J Dig Imaging 2017;30:449–59 doi:10.1007/s10278-017-9983-4 pmid:28577131
    CrossRefPubMed
  20. 20.↵
    1. Korfiatis P,
    2. Kline TL,
    3. Lachance DH, et al
    . Residual deep convolutional neural network predicts MGMT methylation status. J Dig Imaging 2017;30:622–28 doi:10.1007/s10278-017-0009-z pmid:28785873
    CrossRefPubMed
  21. 21.↵
    1. Nakao T,
    2. Hanaoka S,
    3. Nomura Y, et al
    . Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging 2017 Aug 24. [Epub ahead of print] doi:10.1002/jmri.25842 pmid:28836310
    CrossRefPubMed
  22. 22.↵
    1. Wang X,
    2. Peng Y,
    3. Lu L, et al
    . ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii. July 21–26, 2017
  23. 23.↵
    1. Lakhani P,
    2. Sundaram B
    . Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284:574–82 doi:10.1148/radiol.2017162326 pmid:28436741
    CrossRefPubMed
  24. 24.↵
    1. Cybenko G
    . Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 1989;2:303–14 doi:10.1007/BF02551274
    CrossRef
  25. 25.↵
    1. Hornik K
    . Approximation capabilities of multilayer feedforward networks. Neural Networks 1991;4:251–57 doi:10.1016/0893-6080(91)90009-T
    CrossRefWeb of Science
  26. 26.↵
    1. Struffert T,
    2. Hauer M,
    3. Banckwitz R, et al
    . Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology. Eur Radiol 2014;24:1257–65 doi:10.1007/s00330-014-3136-7 pmid:24691631
    CrossRefPubMed
  27. 27.↵
    1. Lang S,
    2. Gölitz P,
    3. Struffert T, et al
    . 4D DSA for dynamic visualization of cerebral vasculature: a single-center experience in 26 cases. AJNR Am J Neuroradiol 2017;38:1169–76 doi:10.3174/ajnr.A5161 pmid:28408632
    Abstract/FREE Full Text
  28. 28.↵
    1. Shapiro LG
    . Connected component labeling and adjacency graph construction. Machine Intelligence and Pattern Recognition 1996;19:1–30
  29. 29.↵
    1. He H,
    2. Garcia EA
    . Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering 2009;21:1263–84
  30. 30.↵
    1. David ST
    1. LeCun Y,
    2. Boser BE,
    3. Denker JS, et al
    . Handwritten digit recognition with a back-propagation network. In: David ST, ed. Advances in Neural Information Processing Systems 2. San Francisco: Morgan Kaufmann Publishers;1990:396–404
  31. 31.↵
    1. Leibe B,
    2. Matas J,
    3. Sebe N, et al.
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Identity mappings in deep residual networks. In: Leibe B, Matas J, Sebe N, et al., eds. Proceedings of Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, the Netherlands. October 1–14, 2016
  32. 32.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, Washington. June 27–30, 2016:770–78
  33. 33.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Los Alamitos, California. December 7–13, 2015:1026–34
  34. 34.↵
    1. Silver D,
    2. Huang A,
    3. Maddison CJ, et al
    . Mastering the game of Go with deep neural networks and tree search. Nature 2016;529:484–89 doi:10.1038/nature16961 pmid:26819042
    CrossRefPubMed
  35. 35.↵
    1. Silver D,
    2. Schrittwieser J,
    3. Simonyan K, et al
    . Mastering the game of Go without human knowledge. Nature 2017;550:354–59 doi:10.1038/nature24270 pmid:29052630
    CrossRefPubMed
  36. 36.↵
    1. Shin HC,
    2. Roth HR,
    3. Gao M, et al
    . Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:1285–98 doi:10.1109/TMI.2016.2528162 pmid:26886976
    CrossRefPubMed
Next
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J.C. Montoya, Y. Li, C. Strother, G.-H. Chen
3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT
American Journal of Neuroradiology Mar 2018, DOI: 10.3174/ajnr.A5597

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT
J.C. Montoya, Y. Li, C. Strother, G.-H. Chen
American Journal of Neuroradiology Mar 2018, DOI: 10.3174/ajnr.A5597
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Artificial Intelligence-Based 3D Angiography for Visualization of Complex Cerebrovascular Pathologies
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Retrospective Study in Tentorial DAVFs
  • Proximal Protection Devices for Carotid Stenting
  • Contour Neurovascular System: Five Year Follow Up
Show more NEUROINTERVENTION

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire