Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeurointervention
Open Access

Differences in Cerebral Aneurysm Rupture Rate According to Arterial Anatomies Depend on the Hemodynamic Environment

S. Fukuda, Y. Shimogonya and N. Yonemoto on behalf of the CFD ABO Study Group
American Journal of Neuroradiology April 2019, DOI: https://doi.org/10.3174/ajnr.A6030
S. Fukuda
aFrom the Department of Neurosurgery (S.F.), National Hospital Organization Kyoto Medical Center, Kyoto, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Fukuda
Y. Shimogonya
bCollege of Engineering (Y.S.), Nihon University, Koriyama, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Shimogonya
N. Yonemoto
cDepartment of Biostatistics (N.Y.), Kyoto University, Kyoto, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Yonemoto
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Etminan N,
    2. Rinkel GJ
    . Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol 2016;12:699–713 doi:10.1038/nrneurol.2016.150 pmid:27808265
    CrossRefPubMed
  2. 2.↵
    1. Morita A,
    2. Kirino T,
    3. Hashi K, et al
    ; the UCAS Japan Investigators. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 2012;366:2474–82 doi:10.1056/NEJMoa1113260 pmid:22738097
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Greving JP,
    2. Wermer M,
    3. Brown RD Jr., et al
    . Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 2014;13:59–66 doi:10.1016/S1474-4422(13)70263-1 pmid:24290159
    CrossRefPubMed
  4. 4.↵
    1. Cebral JR,
    2. Raschi M
    . Suggested connections between risk factors of intracranial aneurysms: a review. Ann Biomed Eng 2013;41:1366–83 doi:10.1007/s10439-012-0723-0 pmid:23242844
    CrossRefPubMed
  5. 5.↵
    1. Kayembe KN,
    2. Sasahara M,
    3. Hazama F
    . Cerebral aneurysms and variations in the circle of Willis. Stroke 1984;15:846–50 doi:10.1161/01.STR.15.5.846 pmid:6474536
    Abstract/FREE Full Text
  6. 6.↵
    1. Shimogonya Y,
    2. Fukuda S
    . Computational and experimental studies into the hemodynamics of cerebral aneurysms. Journal of Biomechanical Science and Engineering 2016;11:15–00488 doi:10.1299/jbse.15-00488
    CrossRef
  7. 7.↵
    1. Xiang J,
    2. Natarajan SK,
    3. Tremmel M, et al
    . Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 2011;42:144–52 doi:10.1161/STROKEAHA.110.592923 pmid:21106956
    CrossRefPubMed
  8. 8.↵
    1. Signorelli F,
    2. Sela S,
    3. Gesualdo L, et al
    . Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: a systematic review. World Neurosurg 2018;115:234–44 doi:10.1016/j.wneu.2018.04.143 pmid:29709752
    CrossRefPubMed
  9. 9.↵
    1. Takao H,
    2. Murayama Y,
    3. Otsuka S, et al
    . Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 2012;43:1436–39 doi:10.1161/STROKEAHA.111.640995 pmid:22363053
    Abstract/FREE Full Text
  10. 10.↵
    1. Cebral JR,
    2. Mut F,
    3. Weir J, et al
    . Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol 2011;32:145–51 doi:10.3174/ajnr.A2419 pmid:21127144
    Abstract/FREE Full Text
  11. 11.↵
    1. Jansen IG,
    2. Schneiders JJ,
    3. Potters WV, et al
    . Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics. AJNR Am J Neuroradiol 2014;35:1543–48 doi:10.3174/ajnr.A3901 pmid:24651816
    Abstract/FREE Full Text
  12. 12.↵
    1. Peiffer V,
    2. Sherwin SJ,
    3. Weinberg PD
    . Computation in the rabbit aorta of a new metric: the transverse wall shear stress—to quantify the multidirectional character of disturbed blood flow. J Biomech 2013;46:2651–58 doi:10.1016/j.jbiomech.2013.08.003 pmid:24044966
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Aoki T,
    2. Yamamoto K,
    3. Fukuda M, et al
    . Sustained expression of MCP-1 under low wall shear stress concomitant with turbulent flow in endothelial cells of intracranial aneurysm. Acta Neuropathol Commun 2016;4:48 doi:10.1186/s40478-016-0318-3 pmid:27160403
    CrossRefPubMed
  14. 14.↵
    1. Chien S
    . Effects of disturbed flow on endothelial cells. Ann Biomed Eng 2008;36:554–62 doi:10.1007/s10439-007-9426-3 pmid:18172767
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Aoki T,
    2. Kataoka H,
    3. Shimamura M, et al
    . NF- kappaB is a key mediator of cerebral aneurysm formation. Circulation 2007;116:2830–40 doi:10.1161/CIRCULATIONAHA.107.728303 pmid:18025535
    Abstract/FREE Full Text
  16. 16.↵
    1. Nuki Y,
    2. Tsou TL,
    3. Kurihara C, et al
    . Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension 2009;54:1337–44 doi:10.1161/HYPERTENSIONAHA.109.138297 pmid:19884566
    CrossRefPubMed
  17. 17.↵
    1. Aoki T,
    2. Fukuda M,
    3. Nishimura M, et al
    . Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation. Acta Neuropathol Commun 2014;2:34 doi:10.1186/2051-5960-2-34 pmid:24685329
    CrossRefPubMed
  18. 18.↵
    1. Shojima M,
    2. Oshima M,
    3. Takagi K, et al
    . Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004;35:2500–05 doi:10.1161/01.STR.0000144648.89172.0f pmid:15514200
    Abstract/FREE Full Text
  19. 19.↵
    1. Lin N,
    2. Ho A,
    3. Gross BA, et al
    . Differences in simple morphological variables in ruptured and unruptured middle cerebral artery aneurysms. J Neurosurg 2012;117:913–19 doi:10.3171/2012.7.JNS111766 pmid:22957531
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Maiti TK,
    2. Bir SC,
    3. Patra DP, et al
    . 158 Morphological parameters for anterior communicating artery aneurysm rupture risk assessment. Neurosurgery 2016;63:163–64 doi:10.1227/01.neu.0000489727.54111.8a
    CrossRef
  21. 21.↵
    1. Kashiwazaki D,
    2. Kuroda S
    ; Sapporo SAH Study Group. Size ratio can highly predict rupture risk in intracranial small (<5 mm) aneurysms. Stroke 2013;44:2169–73 doi:10.1161/STROKEAHA.113.001138 pmid:23743979
    Abstract/FREE Full Text
  22. 22.↵
    1. Lauric A,
    2. Baharoglu MI,
    3. Gao BL, et al
    . Incremental contribution of size ratio as a discriminant for rupture status in cerebral aneurysms: comparison with size, height, and vessel diameter. Neurosurgery 2012;70:944–51; discussion 951–52 doi:10.1227/NEU.0b013e31823bcda7 pmid:21997542
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Sugiyama S,
    2. Niizuma K,
    3. Sato K, et al
    . Blood flow into basilar tip aneurysms: a predictor for recanalization after coil embolization. Stroke 2016;47:2541–47 doi:10.1161/STROKEAHA.116.013555 pmid:27625377
    Abstract/FREE Full Text
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Differences in Cerebral Aneurysm Rupture Rate According to Arterial Anatomies Depend on the Hemodynamic Environment
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
S. Fukuda, Y. Shimogonya, N. Yonemoto
Differences in Cerebral Aneurysm Rupture Rate According to Arterial Anatomies Depend on the Hemodynamic Environment
American Journal of Neuroradiology Apr 2019, DOI: 10.3174/ajnr.A6030

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Differences in Cerebral Aneurysm Rupture Rate According to Arterial Anatomies Depend on the Hemodynamic Environment
S. Fukuda, Y. Shimogonya, N. Yonemoto
American Journal of Neuroradiology Apr 2019, DOI: 10.3174/ajnr.A6030
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Vascular Endothelial Cells Perform Distinct Sensing and Signaling of Laminar and Disturbed Flows across Plasma Membranes and Mitochondria
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Retrospective Study in Tentorial DAVFs
  • Proximal Protection Devices for Carotid Stenting
  • Contour Neurovascular System: Five Year Follow Up
Show more NEUROINTERVENTION

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire