Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticleADULT BRAIN

Tractography at 3T MRI of Corpus Callosum Tracts Crossing White Matter Hyperintensities

W. Reginold, J. Itorralba, A.C. Luedke, J. Fernandez-Ruiz, J. Reginold, O. Islam and A. Garcia
American Journal of Neuroradiology September 2016, 37 (9) 1617-1622; DOI: https://doi.org/10.3174/ajnr.A4788
W. Reginold
aFrom the Departments of Medical Imaging (W.R.)
cMemory Clinics (W.R., A.G.), Division of Geriatric Medicine, Department of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Reginold
J. Itorralba
dCentre for Neuroscience Studies (J.I., A.G., A.C.L.), Queen's University, Kingston, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Itorralba
A.C. Luedke
dCentre for Neuroscience Studies (J.I., A.G., A.C.L.), Queen's University, Kingston, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.C. Luedke
J. Fernandez-Ruiz
eFacultad de Medicina, (J.F.-R.), Universidad Nacional Autonoma de Mexico, Coyoacán, Mexico
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Fernandez-Ruiz
J. Reginold
bLife Sciences (J.R.), University of Toronto, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Reginold
O. Islam
fDepartment of Diagnostic Radiology (O.I.), Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for O. Islam
A. Garcia
cMemory Clinics (W.R., A.G.), Division of Geriatric Medicine, Department of Medicine
dCentre for Neuroscience Studies (J.I., A.G., A.C.L.), Queen's University, Kingston, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Garcia
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: The impact of white matter hyperintensities on the diffusion characteristics of crossing tracts is unclear. This study used quantitative tractography at 3T MR imaging to compare, in the same individuals, the diffusion characteristics of corpus callosum tracts that crossed white matter hyperintensities with the diffusion characteristics of corpus callosum tracts that did not pass through white matter hyperintensities.

MATERIALS AND METHODS: Brain T2 fluid-attenuated inversion recovery–weighted and diffusion tensor 3T MR imaging scans were acquired in 24 individuals with white matter hyperintensities. Tractography data were generated by the Fiber Assignment by Continuous Tracking method. White matter hyperintensities and corpus callosum tracts were manually segmented. In the corpus callosum, the fractional anisotropy, radial diffusivity, and mean diffusivity of tracts crossing white matter hyperintensities were compared with the fractional anisotropy, radial diffusivity, and mean diffusivity of tracts that did not cross white matter hyperintensities. The cingulum, long association fibers, corticospinal/bulbar tracts, and thalamic projection fibers were included for comparison.

RESULTS: Within the corpus callosum, tracts that crossed white matter hyperintensities had decreased fractional anisotropy compared with tracts that did not pass through white matter hyperintensities (P = .002). Within the cingulum, tracts that crossed white matter hyperintensities had increased radial diffusivity compared with tracts that did not pass through white matter hyperintensities (P = .001).

CONCLUSIONS: In the corpus callosum and cingulum, tracts had worse diffusion characteristics when they crossed white matter hyperintensities. These results support a role for white matter hyperintensities in the disruption of crossing tracts.

ABBREVIATIONS:

CC
corpus callosum
CC-WMH tracts
corpus callosum tracts crossing white matter hyperintensities
FA
fractional anisotropy
MD
mean diffusivity
RD
radial diffusivity
WMH
white matter hyperintensities
WMH tracts
tracts crossing white matter hyperintensities

The corpus callosum (CC) is the largest commissural tract with >200 million axons connecting the cerebral hemispheres.1 Atrophy of the CC is a marker of neurodegeneration and has been reported in cerebrovascular disease.2⇓⇓⇓⇓⇓–8 White matter hyperintensities (WMH) are high-signal lesions on T2-weighted MR imaging that represent cerebral small vessel disease and have been associated with CC atrophy.7,9⇓⇓⇓⇓–14 The reason for changes in the corpus callosum with WMH is unclear. Earlier studies have suggested that WMH may be an incidental finding and that CC atrophy results from a coexisting disease process.7,10⇓⇓⇓⇓⇓⇓–17 For example, WMH are seen with Alzheimer disease, in which CC atrophy can occur by cortical atrophy and subsequent Wallerian degeneration of corpus callosum fibers originating from pyramidal neurons.7,10,13,15,16 These studies also suggest that WMH may directly cause CC atrophy by disrupting fibers of the corpus callosum as they are passing through the ischemic lesions in the deep white mater.7,10⇓⇓⇓⇓⇓⇓–17

Diffusion tensor imaging can detect early changes in white matter microstructure before atrophy occurs and could clarify the relationship between WMH and the CC.18 In DTI, pathologic processes that alter the structural integrity of tracts lead to changes in water diffusion and mean diffusivity (MD) and radial diffusivity (RD) as well as changes in the directionality of diffusion and fractional anisotropy (FA).18,19 In patients with WMH, decreased FA and increased MD were found in the CC.13 Another study demonstrated correlations among CC atrophy, the FA/MD of deep white matter, and the FA/MD of the CC.17 These results confirm an association between WMH and the entire CC but do not distinguish between the effects of WMH on callosum tracts that cross WMH (CC-WMH) and those that do not cross WMH. If CC-WMH tracts had worse diffusion characteristics than CC tracts not crossing WMH, this feature would support an increased role for WMH in changes in the corpus callosum.

Tractography is an application of DTI that allows the reconstruction of white matter tracts.18 In quantitative tractography, the diffusion characteristics (MD, RD, and FA) along the full trajectory of select fiber tracts can be assessed.18 This study used quantitative tractography to compare the diffusion characteristics of CC-WMH tracts with those of CC tracts not crossing WMH. For comparison, this study also performed a similar analysis in tracts that crossed WMH (WMH tracts) compared with those that did not cross WMH (lesion-free tracts) in the cingulum, long association fibers, corticospinal/bulbar tracts, and thalamic projection fibers. We hypothesized that CC-WMH tracts would have worse diffusion characteristics (increased MD and RD and decreased FA) compared with CC tracts not crossing WMH.

Materials and Methods

Participants

The study was approved by the research ethics board of Queen's University. All participants provided written informed consent before entering the study. All participants underwent a 3T MR imaging brain scan within 2 weeks of cognitive testing, which included the Montreal Cognitive Assessment,20 the Wechsler Memory Scale-III longest span backward,21 the Wechsler Memory Scale-III longest span forward,21 the Stroop Test,22 and Letter-Number Sequencing.21 Exclusion criteria included a diagnosis of mild cognitive impairment or dementia or the presence of metallic objects, devices, or conditions unsafe for MR imaging. The inclusion criterion was the presence of white matter hyperintensities on T2 FLAIR imaging. Ninety-one participants had MR imaging scans, of which 24 subjects met the inclusion criteria for the study. The demographic characteristics of the participants are shown in Table 1.

View this table:
  • View inline
  • View popup
Table 1:

Demographic and clinical data for participantsa

MR Imaging

All brain imaging was acquired in 1 session on a 3T Magnetom Trio MR imaging system (Siemens, Erlangen, Germany) with a 12-channel head coil. A high-resolution anatomic scan was acquired with a sagittal T1-weighted 3D magnetization-prepared rapid acquisition of gradient echo sequence (FOV, 256 mm; spatial resolution, 1 × 1 × 1 mm3; TR, 1760 ms; TE, 2.2 ms; flip angle, 9°; number of sections, 176). An axial T2-weighted 2D fluid-attenuated inversion recovery sequence interleaved scan was acquired for detecting white matter hyperintensities (FOV, 250 mm; voxel size, 1 × 1× 3 mm3; TR, 9000 ms; TE, 79 ms; flip angle, 180°; number of sections, 40). Diffusion tensor imaging data were acquired in 30 directions by using a single-shot echo-planar imaging sequence with 31 volumes of 60 axial sections (b-value 1 = 0 s/mm2 and b-value 2 = 1000 s/mm2; section thickness, 2 mm; TR/TE, 7800/95 ms; FOV, 256 × 256 mm2; acquisition matrix, 128 × 128, resulting in a resolution of 2 × 2 × 2 mm3).

Image Analysis

Analysis was performed with a method described in earlier studies.23,24 Briefly, diffusion-weighted images were corrected for eddy current distortions by using the Diffusion Toolbox in the FMRIB Software Library (FSL; www.fmrib.ox.ac.uk/fsl/fslwiki/FDT25). DTI reconstruction of the preprocessed data from FSL was completed with the Diffusion Toolkit 0.5 (TrackVis; www.trackvis.org/dtk). The output included diffusion tensor data, parametric diffusion-weighted imaging, and FA and MD maps. Tracts were created in the Diffusion Toolkit by the Fiber Assignment by Continuous Tracking method.26 The subject's T2 FLAIR MR imaging was registered to the diffusion-weighted image map by using 3DSlicer 4.1 (www.slicer.org). Tractography data and registered T2 FLAIR were analyzed with TrackVis. All WMH on axial T2 FLAIR were segmented manually. The borders of individual WMH were identified with windowing of the axial T2 FLAIR sections. Individual WMH were outlined section-by-section on all 40 axial T2 FLAIR sections for each patient by using a mouse-controlled interface on TrackVis. Although there is high intrarater and interrater variability, expert manual segmentation of WMH is the criterion standard for segmenting WMH.27 The software generated a single ROI that encompassed all voxels within outlined areas. WMH lesion volume was measured as the total number of voxels that were within the WMH. The locations of WMH were manually classified by using axial, sagittal, and coronal T2 FLAIR reconstructions as periventricular (contiguous with the ventricular system), deep frontal, deep temporal, deep parietal, and deep occipital.28⇓⇓–31

For the analysis of the specific white matter tracts, ROIs were manually placed within tracts of interest by using axial and sagittal color FA maps and T2 FLAIR. Tracts of interest were segmented by choosing tracts with any part through the ROIs. Segmented tracts included the corpus callosum, cingulum, long association fibers, corticospinal/bulbar tracts, and thalamic projection fibers (example in Fig 1). For the analysis of WMH tracts, ROIs were combined to select tracts. For example, to segment CC-WMH tracts, tracts with any part through the WMH ROI and any part through the ROI for segmenting the corpus callosum were selected (Fig 1A). The number, mean FA, mean MD, and RD (average of the second and third eigenvalues19) of WMH tracts were measured. For the analysis of tracts not crossing WMH, ROIs were again combined. For example, to segment tracts within the corpus callosum that did not cross WMH, tracts with no part through the WMH ROI and any part through the ROI for segmenting the corpus callosum were selected (Fig 1A). The number, mean FA, mean MD, and RD of these lesion-free tracts were measured. The percentage of WMH tracts was calculated as the ratio of the number of WMH tracts to the combined number of WMH tracts and lesion-free tracts.

Fig 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig 1.

Tract segmentation, WMH tracts, and lesion-free tracts. Axial T2 FLAIR demonstrates white matter hyperintensities, tractography representation of the entire tracts, WMH tracts, and lesion-free tracts in the corpus callosum (A), cingulum (B), association fibers (C), corticospinal/bulbar tract (D), and thalamic tracts (E).

Statistical Analysis

StatPlus for Windows (AnalystSoft, Walnut, California) was used for statistical analysis. The nonparametric sign test was used to compare the FA, MD, and RD of tracts crossing WMH with tracts not crossing WMH within subjects. Subjects were included in the analysis when they had tracts crossing WMH. Due to multiple testing, a Bonferroni correction was used to adjust P values. P values < .01 were considered statistically significant.

Results

The demographic characteristics of the participants are described in Table 1. The age of participants ranged from 56 to 89 years. All participants had periventricular WMH, 18 (75%) had deep frontal WMH, 11 (46%) had deep parietal WMH, 3 (13%) had deep occipital WMH, and no participants had deep temporal WMH. WMH were located in the CC in all 24 participants, in the cingulum of 17 (71%) participants, in the association tracts of 21 (88%) participants, in the corticospinal/bulbar tract of 20 (83%) participants, and in the thalamic tracts of 16 (67%) participants. Within these tracts, the mean percentage of fibers crossing WMH was 14% ± 14% of the CC, 3% ± 5% of the cingulum, 4% ± 4% of association fibers, 4% ± 6% of the corticospinal/bulbar tract, and 1% ± 2% of thalamic tracts. The CC-WMH tracts and cingulum WMH tracts crossed only periventricular WMH.

CC-WMH tracts had decreased FA compared with CC lesion-free tracts (Table 2). The percentage decrease in FA of WMH tracts compared with lesion-free tracts was 9% ± 9% in the CC, 1% ± 13% in the cingulum, 3% ± 11% in the association fibers, 6% ± 12% in the corticospinal/bulbar tracts, and −2% ± 14% in the thalamic tracts. There was no significant difference in the MD or RD between CC-WMH tracts and CC lesion-free tracts (Table 2). There was increased RD in cingulum-WMH tracts compared with cingulum lesion-free tracts (Table 2). The percentage increase in the RD of WMH tracts compared with lesion-free tracts was −2% ± 15% in the CC, 21% ± 23% in the cingulum, 1% ± 7% in the association fibers, 6% ± 15% in the corticospinal/bulbar tracts, and 5% ± 25% in the thalamic tracts. For the other major white matter tracts, there were no significant differences in the FA, MD, or RD between tracts crossing WMH and those not crossing WMH (Table 2).

View this table:
  • View inline
  • View popup
Table 2:

Comparison in major white matter tracts of the fractional anisotropy, mean diffusivity, and radial diffusivity of tracts crossing and not crossing WMHa

Discussion

This is the first tractography study to compare tracts on the basis of whether they crossed WMH. Decreased FA was found in CC-WMH tracts compared with CC tracts not crossing WMH and is indicative of greater white matter abnormalities in CC tracts crossing through WMH. WMH were associated with modest white matter abnormalities in the CC (8% reduction in FA in 14% of all CC tracts). The association between decreased FA in the CC and WMH is consistent with that in earlier studies.13,17 Increased RD was found in the cingulum WMH tracts compared with cingulum lesion-free tracts and is suggestive of greater abnormalities in the myelination of cingulum tracts crossing through WMH. WMH were also associated with modest white matter abnormalities in the cingulum (a 21% increase in RD in 3% of all cingulum tracts). Earlier studies have reported involvement of the cingulum by WMH; however, this is the first study to detect increased RD.32⇓–34 This tractography study demonstrates that WMH are associated with modest altered diffusion characteristics in crossing tracts.

Earlier studies have suggested that WMH may be incidental markers of a disease process that is disrupting white matter tracts.7,10⇓⇓⇓⇓⇓⇓–17 If WMH are markers of a disease process, our results suggest that WMH are preferentially located on tracts with greater disruption by that disease process. WMH are known to preferentially develop in normal-appearing white matter areas with lower FA than in areas that remain lesion-free.35 Earlier studies have also suggested that WMH may disrupt passing tracts.7,10⇓⇓⇓⇓⇓⇓–17 Our results support this theory because the structural integrity of the CC and cingulum tracts was worse when they passed through WMH. WMH consist of mild-to-marked demyelination, axonal loss, and astrogliosis and have reduced FA, increased MD, and increased RD within the lesions.35⇓–37 The FA of CC-WMH tracts or the RD of cingulum WMH tracts reflects a combination of the diffusion characteristics within the WMH and the portions of the tracts extending beyond the lesions. If the altered diffusion characteristics within WMH accounted for the differences between CC-WMH tracts and CC tracts not crossing WMH or cingulum WMH tracts and cingulum lesion-free tracts, we would have expected to see similar differences in FA and RD between WMH tracts and lesion-free tracts in the long association fibers, corticospinal/bulbar tracts, and thalamic projection fibers. We were unable to detect any difference between WMH tracts and lesion-free tracts in any of the other major white matter tracts, suggesting that WMH may have additional effects on segments of CC-WMH tracts and cingulum WMH tracts outside the lesions. WMH have been previously associated with diffusion abnormalities in normal-appearing white matter closer to WMH.35,36 Wallerian degeneration is a mechanism by which a lesion can produce disruption elsewhere along the length of the tract.7,10,13,15,16 Decreased FA and increased RD, which we have detected in this study, have been previously associated with Wallerian degeneration.19,38,39

Consistent with earlier studies, the periventricular area was the most common location of WMH.28⇓⇓–31 In this study, CC-WMH tracts and cingulum WMH tracts crossed only periventricular WMH. In this study, the CC was the tract most likely, in participants, to cross through WMH and had the greatest proportion of fibers crossing through WMH. The greater involvement by WMH and altered FA may explain why atrophy of the CC has been noted earlier with WMH.7,10,11⇓⇓–14 In this study, the cingulum, long association fibers, corticospinal/bulbar tract, and thalamic fibers were all shown to cross WMH. The cingulum was the only other tract to demonstrate abnormal diffusion in WMH tracts.

It is unclear why CC-WMH tracts were not associated with increased MD and RD and why cingulum WMH tracts were not associated with decreased FA or increased MD. This lack of information may relate to the small sample size of this study. The altered diffusion characteristics detected were modest in size, and the study may have been underpowered to detect other smaller diffusion changes. The decreased tract involvement by WMH of long association fibers and corticospinal/bulbar tract and thalamic fibers compared with the CC may account for no diffusion abnormalities being detected in these tracts. Another limitation of this study is the accuracy of WMH tract reconstruction. The tractography methodology used in this study relies on FA for fiber tracking and reconstruction.26 Some tracts crossing WMH may not have been propagated through the WMH due to the decreased FA within the lesions. This omission may have resulted in some WMH tracts being incorrectly classified as lesion-free tracts. The T2 FLAIR and diffusion tensor images had different resolutions and required registration. Due to errors in alignment, some tracts may have been incorrectly classified as WMH tracts or lesion-free tracts. Another limitation of this study is that diffusion characteristics are an indirect measure of axonal integrity.18 While poor diffusion measures are suggestive of structural disruption, they do not necessarily represent functional disconnection.

Despite these limitations, this study suggests the role WMH have in the disruption of CC and cingulum favors tracts crossing through WMH lesions. WMH may be marking injury or causing disruption of crossing tracts. Future studies with larger cohorts should assess longitudinal changes in WMH and the diffusion characteristics of the CC and cingulum, as the temporal sequence of changes may improve our understanding of WMH as a cause or marker of tract disruption.

Conclusions

Tractography at 3T MR imaging of the corpus callosum demonstrated that tracts that crossed white matter hyperintensities had decreased fractional anisotropy compared with tracts that did not pass through white matter hyperintensities (P = .002). In the cingulum, tracts that crossed white matter hyperintensities had increased radial diffusivity compared with tracts that did not cross white matter hyperintensities (P = .001). These differences in fractional anisotropy and radial diffusivity between tracts crossing and not crossing white matter hyperintensities were not detected in the long association fibers, corticospinal/bulbar tracts, and thalamic projection fibers. Overall, these results support a role for white matter hyperintensities in the disruption of crossing corpus callosum and cingulum tracts.

References

  1. 1.↵
    1. Tomasch J
    . Size, distribution, and number of fibers in the human corpus callosum. Anat Rec 1954;119:119–35 doi:10.1002/ar.1091190109 pmid:13181005
    CrossRefPubMed
  2. 2.↵
    1. Jokinen H,
    2. Ryberg C,
    3. Kalska H, et al
    ; LADIS group. Corpus callosum atrophy is associated with mental slowing and executive deficits in subjects with age-related white matter hyperintensities: the LADIS Study. J Neurol Neurosurg Psychiatry 2007;78:491–96 pmid:17028118
    Abstract/FREE Full Text
  3. 3.↵
    1. Di Paola M,
    2. Spalletta G,
    3. Caltagirone C
    . In vivo structural neuroanatomy of corpus callosum in Alzheimer's disease and mild cognitive impairment using different MRI techniques: a review. J Alzheimers Dis 2010;20:67–95 doi:10.3233/JAD-2010-1370 pmid:20164572
    CrossRefPubMed
  4. 4.↵
    1. Granberg T,
    2. Bergendal G,
    3. Shams S, et al
    . MRI-defined corpus callosal atrophy in multiple sclerosis: a comparison of volumetric measurements, corpus callosum area and index. J Neuroimaging 2015;25:996–1001 doi:10.1111/jon.12237 pmid:25786805
    CrossRefPubMed
  5. 5.↵
    1. Crawford HE,
    2. Hobbs NZ,
    3. Keogh R, et al
    ; TRACK-HD Investigators. Corpus callosal atrophy in premanifest and early Huntington's disease. J Huntingtons Dis 2013;2:517–26 doi:10.3233/JHD-130077 pmid:25062736
    CrossRefPubMed
  6. 6.↵
    1. Wu TC,
    2. Wilde EA,
    3. Bigler ED, et al
    . Longitudinal changes in the corpus callosum following pediatric traumatic brain injury. Dev Neurosci 2010;32:361–73 doi:10.1159/000317058 pmid:20948181
    CrossRefPubMed
  7. 7.↵
    1. Meguro K,
    2. Constans JM,
    3. Courtheoux P, et al
    . Atrophy of the corpus callosum correlates with white matter lesions in patients with cerebral ischaemia. Neuroradiology 2000;42:413–19 doi:10.1007/s002340000302 pmid:10929300
    CrossRefPubMed
  8. 8.↵
    1. Tomimoto H,
    2. Lin JX,
    3. Matsuo A, et al
    . Different mechanisms of corpus callosum atrophy in Alzheimer's disease and vascular dementia. J Neurol 2004;251:398–406 doi:10.1007/s00415-004-0330-6 pmid:15083283
    CrossRefPubMed
  9. 9.↵
    1. Debette S,
    2. Markus HS
    . The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010;26:341:c3666 doi:10.1136/bmj.c3666 pmid:20660506
    CrossRefPubMed
  10. 10.↵
    1. Vermersch P,
    2. Roche J,
    3. Hamon M, et al
    . White matter magnetic resonance imaging hyperintensity in Alzheimer's disease: correlations with corpus callosum atrophy. J Neurol 1996;243:231–34 doi:10.1007/BF00868519 pmid:8936352
    CrossRefPubMed
  11. 11.↵
    1. Ryberg C,
    2. Rostrup E,
    3. Sjöstrand K, et al
    ; LADIS study group. White matter changes contribute to corpus callosum atrophy in the elderly: the LADIS study. AJNR Am J Neuroradiol 2008;29:1498–504 doi:10.3174/ajnr.A1169 pmid:18556357
    Abstract/FREE Full Text
  12. 12.↵
    1. Ryberg C,
    2. Rostrup E,
    3. Paulson OB, et al
    ; LADIS study group. Corpus callosum atrophy as a predictor of age-related cognitive and motor impairment: a 3-year follow-up of the LADIS study cohort. J Neurol Sci 2011;307:100–05 doi:10.1016/j.jns.2011.05.002 pmid:21621224
    CrossRefPubMed
  13. 13.↵
    1. Wu XP,
    2. Gao YJ,
    3. Yang JL, et al
    . Quantitative measurement to evaluate morphological changes of the corpus callosum in patients with subcortical ischemic vascular dementia. Acta Radiol 2015;56:214–18 doi:10.1177/0284185114520863 pmid:24445093
    Abstract/FREE Full Text
  14. 14.↵
    1. Yamauchi H,
    2. Fukuyama H,
    3. Shio H
    . Corpus callosum atrophy in patients with leukoaraiosis may indicate global cognitive impairment. Stroke 2000;31:1515–20 doi:10.1161/01.STR.31.7.1515 pmid:10884446
    Abstract/FREE Full Text
  15. 15.↵
    1. Teipel SJ,
    2. Hampel H,
    3. Alexander GE, et al
    . Dissociation between corpus callosum atrophy and white matter pathology in Alzheimer's disease. Neurology 1998;51:1381–85 doi:10.1212/WNL.51.5.1381 pmid:9818864
    Abstract/FREE Full Text
  16. 16.↵
    1. Teipel SJ,
    2. Bayer W,
    3. Alexander GE, et al
    . Progression of corpus callosum atrophy in Alzheimer disease. Arch Neurol 2002;59:243–48 doi:10.1001/archneur.59.2.243 pmid:11843695
    CrossRefPubMed
  17. 17.↵
    1. Otsuka Y,
    2. Yamauchi H,
    3. Sawamoto N, et al
    . Diffuse tract damage in the hemispheric deep white matter may correlate with global cognitive impairment and callosal atrophy in patients with extensive leukoaraiosis. AJNR Am J Neuroradiol 2012;33:726–32 doi:10.3174/ajnr.A2853 pmid:22210709
    Abstract/FREE Full Text
  18. 18.↵
    1. Johansen-Berg H,
    2. Behrens TE
    1. Behrens TE,
    2. Jbabdi S
    . MR diffusion tractography. In: Johansen-Berg H, Behrens TE, eds. Diffusion MRI: from Quantitative Measurement to in vivo Neuroanatomy. New York: Elsevier; 2009:333–51
  19. 19.↵
    1. Song SK,
    2. Sun SW,
    3. Ramsbottom MJ, et al
    . Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002;17:1429–36 doi:10.1006/nimg.2002.1267 pmid:12414282
    CrossRefPubMed
  20. 20.↵
    1. Nasreddine ZS,
    2. Phillips NA,
    3. Bédirian V, et al
    . The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695–99 doi:10.1111/j.1532-5415.2005.53221.x pmid:15817019
    CrossRefPubMed
  21. 21.↵
    1. Wechsler D
    . Wechsler Memory Scale. 3rd ed. San Antonio: Psychological Corporation; 1987
  22. 22.↵
    1. Stroop JR
    . Studies of interference in serial verbal reactions. Journal of Experimental Psychology 1935;18:643–62 doi:10.1037/h0054651
    CrossRef
  23. 23.↵
    1. Reginold W,
    2. Luedke AC,
    3. Tam A, et al
    . Cognitive function and 3-Tesla magnetic resonance imaging tractography of white matter hyperintensities in elderly persons. Dement Geriatr Cogn Dis Extra 2015;5:387–94 doi:10.1159/000439045 pmid:26628897
    CrossRefPubMed
  24. 24.↵
    1. Reginold W,
    2. Itorralba J,
    3. Tam A, et al
    . Correlating quantitative tractography at 3T MRI and cognitive tests in healthy older adults. Brain Imaging Behav 2015 Dec 9. [Epub ahead of print] pmid:26650629
  25. 25.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW, et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23:S208–19 pmid:15501092
    CrossRefPubMed
  26. 26.↵
    1. Wiegell MR,
    2. Larsson HB,
    3. Wedeen VJ
    . Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 2000;217:897–903 doi:10.1148/radiology.217.3.r00nv43897 pmid:11110960
    CrossRefPubMed
  27. 27.↵
    1. Simões R,
    2. Mönninghoff C,
    3. Dlugaj M, et al
    . Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images. Magn Reson Imaging 2013;31:1182–89 doi:10.1016/j.mri.2012.12.004 pmid:23684961
    CrossRefPubMed
  28. 28.↵
    1. Fazekas F,
    2. Kapeller P,
    3. Schmidt R, et al
    . The relation of cerebral magnetic resonance signal hyperintensities to Alzheimer's disease. J Neurol Sci 1996;142:121–25 doi:10.1016/0022-510X(96)00169-4 pmid:8902731
    CrossRefPubMed
  29. 29.↵
    1. DeCarli C,
    2. Fletcher E,
    3. Ramey V, et al
    . Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke 2005;36:50–55 doi:10.1161/01.STR.0000150668.58689.f2 pmid:15576652
    Abstract/FREE Full Text
  30. 30.↵
    1. Yoshita M,
    2. Fletcher E,
    3. Harvey D, et al
    . Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology 2006;67:2192–98 doi:10.1212/01.wnl.0000249119.95747.1f pmid:17190943
    Abstract/FREE Full Text
  31. 31.↵
    1. Wen W,
    2. Sachdev P
    . The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 2004;22:144–54 doi:10.1016/j.neuroimage.2003.12.027 pmid:15110004
    CrossRefPubMed
  32. 32.↵
    1. Glodzik L,
    2. Kuceyeski A,
    3. Rusinek H, et al
    . Reduced glucose uptake and Aβ in brain regions with hyperintensities in connected white matter. Neuroimage 2014;100:684–91 doi:10.1016/j.neuroimage.2014.06.060 pmid:24999038
    CrossRefPubMed
  33. 33.↵
    1. Tuladhar AM,
    2. van Norden AG,
    3. de Laat KF, et al
    . White matter integrity in small vessel disease is related to cognition. Neuroimage Clin 2015;7:518–24 doi:10.1016/j.nicl.2015.02.003 pmid:25737960
    CrossRefPubMed
  34. 34.↵
    1. Taylor WD,
    2. Kudra K,
    3. Zhao Z, et al
    . Cingulum bundle white matter lesions influence antidepressant response in late-life depression: a pilot study. J Affect Disord 2014;162:8–11 doi:10.1016/j.jad.2014.03.031 pmid:24766997
    CrossRefPubMed
  35. 35.↵
    1. de Groot M,
    2. Verhaaren BF,
    3. de Boer R, et al
    . Changes in normal-appearing white matter precede development of white matter lesions. Stroke 2013;44:1037–42 doi:10.1161/STROKEAHA.112.680223 pmid:23429507
    Abstract/FREE Full Text
  36. 36.↵
    1. Gouw AA,
    2. Seewann A,
    3. van der Flier WM, et al
    . Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 2011;82:126–35 doi:10.1136/jnnp.2009.204685 pmid:20935330
    Abstract/FREE Full Text
  37. 37.↵
    1. Bastin ME,
    2. Clayden JD,
    3. Pattie A, et al
    . Diffusion tensor and magnetization transfer MRI measurements of periventricular white matter hyperintensities in old age. Neurobiol Aging 2009;30:125–36 doi:10.1016/j.neurobiolaging.2007.05.013 pmid:17624630
    CrossRefPubMed
  38. 38.↵
    1. Sun SW,
    2. Liang HF,
    3. Cross AH, et al
    . Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage 2008;40:1–10 doi:10.1016/j.neuroimage.2007.11.049 pmid:18187343
    CrossRefPubMed
  39. 39.↵
    1. Thomalla G,
    2. Glauche V,
    3. Weiller C, et al
    . Time course of Wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging. J Neurol Neurosurg Psychiatry 2005;76:266–68 doi:10.1136/jnnp.2004.046375 pmid:15654048
    Abstract/FREE Full Text
  • Received December 24, 2015.
  • Accepted after revision February 16, 2016.
  • © 2016 by American Journal of Neuroradiology
View Abstract
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 37 (9)
American Journal of Neuroradiology
Vol. 37, Issue 9
1 Sep 2016
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Tractography at 3T MRI of Corpus Callosum Tracts Crossing White Matter Hyperintensities
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
W. Reginold, J. Itorralba, A.C. Luedke, J. Fernandez-Ruiz, J. Reginold, O. Islam, A. Garcia
Tractography at 3T MRI of Corpus Callosum Tracts Crossing White Matter Hyperintensities
American Journal of Neuroradiology Sep 2016, 37 (9) 1617-1622; DOI: 10.3174/ajnr.A4788

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Tractography at 3T MRI of Corpus Callosum Tracts Crossing White Matter Hyperintensities
W. Reginold, J. Itorralba, A.C. Luedke, J. Fernandez-Ruiz, J. Reginold, O. Islam, A. Garcia
American Journal of Neuroradiology Sep 2016, 37 (9) 1617-1622; DOI: 10.3174/ajnr.A4788
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Longitudinal evidence for a mutually reinforcing relationship between white matter hyperintensities and cortical thickness in cognitively unimpaired older adults
  • Diffusion MRI free water is a sensitive marker of age-related changes in the cingulum
  • Disconnectome Associated with Progressive Ischemic Periventricular White Matter Lesions
  • Crossref (21)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Impact of white matter hyperintensities on surrounding white matter tracts
    William Reginold, Kevin Sam, Julien Poublanc, Joe Fisher, Adrian Crawley, David J. Mikulis
    Neuroradiology 2018 60 9
  • Altered Superficial White Matter on Tractography MRI in Alzheimer&#039;s Disease
    William Reginold, Angela C. Luedke, Justine Itorralba, Juan Fernandez-Ruiz, Omar Islam, Angeles Garcia
    Dementia and Geriatric Cognitive Disorders Extra 2016 6 2
  • Spatial Gradient of Microstructural Changes in Normal-Appearing White Matter in Tracts Affected by White Matter Hyperintensities in Older Age
    Susana Muñoz Maniega, Rozanna Meijboom, Francesca M. Chappell, Maria del C. Valdés Hernández, John M. Starr, Mark E. Bastin, Ian J. Deary, Joanna M. Wardlaw
    Frontiers in Neurology 2019 10
  • Free water: A marker of age-related modifications of the cingulum white matter and its association with cognitive decline
    Manon Edde, Guillaume Theaud, François Rheault, Bixente Dilharreguy, Catherine Helmer, Jean-François Dartigues, Hélène Amieva, Michèle Allard, Maxime Descoteaux, Gwénaëlle Catheline, Stephen D. Ginsberg
    PLOS ONE 2020 15 11
  • Alterations of White Matter Integrity in Subcortical Ischemic Vascular Disease with and Without Cognitive Impairment: a TBSS Study
    Xiaoshuang Liu, Runtian Cheng, Li Chen, Tianyou Luo, FaJin Lv, Junwei Gong, Peiling Jiang
    Journal of Molecular Neuroscience 2019 67 4
  • White matter hyperintensities induce distal deficits in the connected fibers
    Yanpeng Liu, Yiwei Xia, Xiaoxiao Wang, Yanming Wang, Du Zhang, Benedictor Alexander Nguchu, Jiajie He, Yi Wang, Lumeng Yang, Yiqing Wang, Yunqing Ying, Xiaoniu Liang, Qianhua Zhao, Jianjun Wu, Zonghui Liang, Ding Ding, Qiang Dong, Bensheng Qiu, Xin Cheng, Jia‐Hong Gao
    Human Brain Mapping 2021 42 6
  • Loss of Integrity of Corpus Callosum White Matter Hyperintensity Penumbra Predicts Cognitive Decline in Patients With Subcortical Vascular Mild Cognitive Impairment
    Yage Qiu, Ling Yu, Xin Ge, Yawen Sun, Yao Wang, Xiaowei Wu, Qun Xu, Yan Zhou, Jianrong Xu
    Frontiers in Aging Neuroscience 2021 13
  • The frequent complete subgraphs in the human connectome
    Máté Fellner, Bálint Varga, Vince Grolmusz, Constantine Dovrolis
    PLOS ONE 2020 15 8
  • In Pre-Clinical AD Small Vessel Disease is Associated With Altered Hippocampal Connectivity and Atrophy
    Minjie Wu, Noah Schweitzer, Bistra E. Iordanova, Edythe Halligan-Eddy, Dana L. Tudorascu, Chester A. Mathis, Brian J. Lopresti, M. Ilyas Kamboh, Ann D. Cohen, Beth E. Snitz, William E. Klunk, Howard J. Aizenstein
    The American Journal of Geriatric Psychiatry 2023 31 2
  • Micro-structural white matter abnormalities and cognitive impairment in asymptomatic carotid plaque patients: A DTI study using TBSS analysis
    Lihui Liu, Qing Huang, Shuai Yang, Yanbin Wen, Wei He, Hui Liu, Li Meng, Hong Jiang, Jian Xia, Weihua Liao, Yunhai Liu
    Clinical Neurology and Neurosurgery 2020 197

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • ML for Glioma Molecular Subtype Prediction
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire