Research ArticleBRAIN
Perfusion-Weighted MR Imaging Studies in Brain Hypervascular Diseases: Comparison of Arterial Input Function Extractions for Perfusion Measurement
D. Ducreux, I. Buvat, J.F. Meder, D. Mikulis, A. Crawley, D. Fredy, K. TerBrugge, P. Lasjaunias and J. Bittoun
American Journal of Neuroradiology May 2006, 27 (5) 1059-1069;
D. Ducreux
I. Buvat
J.F. Meder
D. Mikulis
A. Crawley
D. Fredy
K. TerBrugge
P. Lasjaunias

References
- ↵Fink GR. Effects of cerebral angiomas on perifocal and remote tissue: a multivariate positron emission tomography study. Stroke 1992;23:1099–105
- Young WL, Pile-Spellman J, Prohovnik I, et al. Evidence for adaptive autoregulatory displacement in hypotensive cortical territories adjacent to AVMs: Columbia University AVS Study Project. Neurosurgery 1994;34:601–11
- Hacein-Bey L, Nour R, Pile-Spellman J, et al. Adaptive changes of autoregulation in chronic cerebral hypotension with AVMs: an acetazolamide-enhanced single-photon emission CT study. AJNR Am J Neuroradiol 1995;16:1865–74
- Leblanc E, Meyer E, Zatorre R, et al. Functional PET scanning in the preoperative assessment of cerebral AVMs. Stereotact Funct Neurosurg 1995;65:60–64
- ↵Kader A, Young WL. The effects of intracranial AVMs on cerebral hemodynamics. Neurosurg Clin N Am 1996;7:767–81
- Charbel FT, Hoffman WE, Misra M, et al. Increased brain tissue oxygenation during AVM resection. Neurol Med Chir (Tokyo) 1998;38(suppl):171–76
- Meyer B, Schaller C, Frenkel C, et al. Physiological steal around AVSs of the brain is not equivalent to cortical ischemia. Neurol Res 1998;20(suppl 1):S13–17
- Meyer B, Schaller C, Frenkel C, et al. Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to AVMs. Stroke 1999;30:2623–30
- ↵
- ↵Lasjaunias P. Brain arteriovenous malformations. In: Lasjaunias P, Berenstein L, Ter Brugge K. Surgical Neuroangiography. Vol.1 . Heidelberg, Germany: Springer-Verlag;2002 :14–22
- ↵Lassen NA. Cerebral transit of an intravascular tracer may allow measurement of regional blood volume but not regional blood flow. J Cereb Blood Flow Metab 1984;4:633–34
- ↵Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography. Q J Nucl Med 2002;46:70–85
- ↵Neumann-Haefelin T, Wittsack HJ, Wenserski F, et al. Diffusion- and perfusion-weighted MRI: The DWI/PWI mismatch region in acute stroke. Stroke 1999;30:1591–97
- ↵Knopp EA, Cha S, Johnson G, et al. Glial neoplasm: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999;211:791–98
- ↵Meier P, Zierler LL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954;6:731–44
- ↵Ostergaard L, Weisskoff RM, Chesler DA, et al. High-resolution measurement of cerebral blood flow using intravascular bolus passages. Part I. Mathematical approach and statistical analysis. Magn Res Med 1996;36:715–25
- ↵Sakaki T, Tsujimoto S, Nishitani M, et al. Perfusion pressure breakthrough threshold of cerebral autoregulation in the chronically ischemic brain: an experimental study in cats. J Neurosurg 1992;76:478—85
- ↵Ducreux D, Lasjaunias P, Meder JF, et al. MR perfusion imaging findings in proliferative angiopathies. Neuroradiology 2004;46:105–12
- ↵Hoppin JW, Kupinski MA, Kastis GA, et al. Objective comparison of quantitative imaging modalities without the use of a gold standard. IEEE Trans Med Imaging 2002;21:441–49
- ↵
- ↵Villringer A, Rosen BR, Belliveau JW, et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effect. Magn Res Med 1988;6:164–74
- ↵Boxerman JL, Hamberg LM, Rosen BR, et al. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Res Med 1995;34:555–66
- ↵Kennan RP, Zhong J, Gore JC. Intravascular susceptibility contrast mechanism in tissues. Magn Res Med 1994;31:9–21
- ↵Smith AM, Grandin CB, Duprez T, et al. Whole-brain quantitative CBF, CBV, and MTT measurements using MRI bolus-tracking: implementation and application to data acquired from hyperacute stroke patients. J Magn Reson Imaging 2000;12:400–10
- ↵Weisskoff RM, Zuo CS, Boxerman JL, et al. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Res Med 1994;31:601–10
- ↵Lassen NA, Perl W. Tracer Kinetic Methods in Medical Physiology. New York: Raven;1979 :156–75
- Fisel CR, Ackerman JL, Buxton RB, et al. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Res Med 1991;17:336–47
- ↵Rosen BR, Belliveau JW, Buchbinder BR, et al. Contrast agent and cerebral hemodynamics. Magn Res Med 1991;19:285–92
- ↵Kiselev VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med. 2001;46:1113–22
- ↵Grandin CB, Smith AM, Cosnard G. Quantification of brain perfusion with bolus-tracking MR imaging: comparison of gradient-echo and spin-echo sequences. ESMRMB. Sevilla 1999;MAGMA 1999;8(suppl 1) ;32
- ↵Marquart DW. An algorithm for least squares estimation of non-linear parameters. J Soc Industr Appl Math 1963;11:431–41
- ↵Starmer CF, Clarck DO. Computer computations of cardiac output using the gamma-function. J Appl Physiol 1970;28:219–20
- ↵Rempp KA, Brix B, Wenz F, et al. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637–41
- ↵
- Axel L. Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 1980;137:679–86
- Calamante F, Thomas DL, Pell GS, et al. Measuring cerebral blood flow using magnetic resonance techniques. J Cereb Blood Flow Metab 1999;19:701–35
- Wirestam R, Andersson L, Ostergaard L, et al. Measurements of rCBF using dynamic susceptibility contrast MRI: comparison of different deconvolution techniques and different locations of the arterial input function: Proceedings of the ISMRM, Philadelphia, Proliferative Angiopathies. 605, May 1999
- ↵Wirestam R, Andersson L, Ostergaard L, et al. Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 2000;43:691–700
- ↵Willinsky R, Terbrugge K, Montanera W, et al. Venous congestion: an MR finding in dural AVMs with cortical venous drainage. AJNR Am J Neuroradiol 1994;15:1501–07
- Mast H, Mohr JP, Osipov A, et al. “Steal” is an unestablished mechanism for the clinical presentation of cerebral AVMs. Stroke 1995;26:1215–20
- Gao E, Young WL, Ornstein E, et al. A theoretical model of cerebral hemodynamics: application to the study of AVMs. J Cereb Blood Flow Metab 1997;17:905–18
- ↵
- ↵
- ↵
- ↵Van Osch MJ, Vonken EP, Bakker CJ, et al. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001;45:477–85
- ↵Ellinger R, Kremser C, Schocke MF, et al. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr. 2000;24:942–48
In this issue
Advertisement
D. Ducreux, I. Buvat, J.F. Meder, D. Mikulis, A. Crawley, D. Fredy, K. TerBrugge, P. Lasjaunias, J. Bittoun
Perfusion-Weighted MR Imaging Studies in Brain Hypervascular Diseases: Comparison of Arterial Input Function Extractions for Perfusion Measurement
American Journal of Neuroradiology May 2006, 27 (5) 1059-1069;
0 Responses
Perfusion-Weighted MR Imaging Studies in Brain Hypervascular Diseases: Comparison of Arterial Input Function Extractions for Perfusion Measurement
D. Ducreux, I. Buvat, J.F. Meder, D. Mikulis, A. Crawley, D. Fredy, K. TerBrugge, P. Lasjaunias, J. Bittoun
American Journal of Neuroradiology May 2006, 27 (5) 1059-1069;
Jump to section
Related Articles
- No related articles found.
Cited By...
- No citing articles found.
This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.
More in this TOC Section
Similar Articles
Advertisement