Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleBrain
Open Access

Regional White Matter Atrophy−Based Classification of Multiple Sclerosis in Cross-Sectional and Longitudinal Data

M.P. Sampat, A.M. Berger, B.C. Healy, P. Hildenbrand, J. Vass, D.S. Meier, T. Chitnis, H.L. Weiner, R. Bakshi and C.R.G. Guttmann
American Journal of Neuroradiology October 2009, 30 (9) 1731-1739; DOI: https://doi.org/10.3174/ajnr.A1659
M.P. Sampat
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.M. Berger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.C. Healy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Hildenbrand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Vass
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.S. Meier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Chitnis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.L. Weiner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Bakshi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.R.G. Guttmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Miller DH,
    2. Barkhof F,
    3. Frank JA,
    4. et al
    ., Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002;125(pt 8):1676–95
    Abstract/FREE Full Text
  2. 2.↵
    1. Bermel RA,
    2. Bakshi R
    . The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 2006;5:158–70
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Hauser SL,
    2. Oksenberg JR
    . The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 2006;52:61–76
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Owens T
    . The enigma of multiple sclerosis: inflammation and neurodegeneration cause heterogeneous dysfunction and damage. Curr Opin Neurol 2003;16:259–65
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Peterson LK,
    2. Fujinami RS
    . Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol 2007;184:37–44
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Miller DH,
    2. Leary SM
    . Primary-progressive multiple sclerosis. Lancet Neurol 2007;6:903–12
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Ge Y
    . Multiple sclerosis: the role of MR imaging. AJNR Am J Neuroradiol 2006;27:1165–76
    Abstract/FREE Full Text
  8. 8.↵
    1. Miller DH
    . Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. NeuroRx 2004;1:284–94
    Abstract/FREE Full Text
  9. 9.↵
    1. Sailer M,
    2. Fischl B,
    3. Salat BD,
    4. et al
    . Focal thinning of the cerebral cortex in multiple sclerosis. Brain 2003;126(pt 8):1734–44
    Abstract/FREE Full Text
  10. 10.↵
    1. Bermel RA,
    2. Bakshi R,
    3. Tjoa RC,
    4. et al
    . Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis. Arch Neurol 2002;59:275–80
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Houtchens MK,
    2. Benedict RH,
    3. Killiany R,
    4. et al
    . Thalamic atrophy and cognition in multiple sclerosis. Neurology 2007;69:1213–23
    Abstract/FREE Full Text
  12. 12.↵
    1. Liptak Z,
    2. Berger AM,
    3. Sampat MP,
    4. et al
    . Medulla oblongata volume: a biomarker of spinal cord damage and disability in multiple sclerosis. AJNR Am J Neuroradiol 2008;29:1465–70
    Abstract/FREE Full Text
  13. 13.↵
    1. Pelletier J,
    2. Suchet JL,
    3. Witjas T,
    4. et al
    . A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch Neurol 2001;58:105–11
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Gauthier SA,
    2. Glanz BI,
    3. Mandel M,
    4. et al
    . A model for the comprehensive investigation of a chronic autoimmune disease: the multiple sclerosis CLIMB study. Autoimmun Rev 2006;5:532–36
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. McDonald WI,
    2. Compston A,
    3. Edan G,
    4. et al
    . Recommended diagnostic criteria for Multiple Sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol 2001;50:121–27
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Polman CH,
    2. Reingold SC,
    3. Edan G,
    4. et al
    . Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria.” Ann Neurol 2005;58:840–46
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Lublin FD,
    2. Reingold SC
    . Defining the clinical course of multiple sclerosis: results of an international survey—National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996;46:907–11
    Abstract/FREE Full Text
  18. 18.↵
    1. Wei X,
    2. Warfield SK,
    3. Zou KH,
    4. et al
    . Quantitative analysis of MRI signal abnormalities of brain white matter with high reproducibility and accuracy. J Magn Reson Imaging 2002;15:203–09
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Warfield SK,
    2. Kaus M,
    3. Jolesz FA,
    4. et al
    . Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 2000;4:43–55
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Guttmann CR,
    2. Kikinis R,
    3. Anderson MC,
    4. et al
    . Quantitative follow-up of patients with multiple sclerosis using MRI: reproducibility. J Magn Reson Imaging 1999;9:509–18
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Luft AR,
    2. Skalej M,
    3. Schulz JB,
    4. et al
    . Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex 1999;9:712–21
    Abstract/FREE Full Text
  22. 22.↵
    1. Murshed KA,
    2. Ziylan T,
    3. Seker TM,
    4. et al
    . Morphometric assessment of brain stem und cerebellar vermis with midsagittal MRI: the gender differences and effects of age. Neuroanatomy 2003;2:35–38
  23. 23.↵
    1. Rashid W,
    2. Davies GR,
    3. Chard DT,
    4. et al
    . Increasing cord atrophy in early relapsing-remitting multiple sclerosis: a 3 year study. J Neurol Neurosurg Psychiatry 2006;77:51–55
    Abstract/FREE Full Text
  24. 24.↵
    1. Vaithianathar L,
    2. Tench CR,
    3. Morgan PS,
    4. et al
    . Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis: a quantitative T1 relaxation time mapping approach. J Neurol 2003;250:307–15
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Liu C,
    2. Edwards CS,
    3. Gong Q,
    4. et al
    . Three dimensional MRI estimates of brain and spinal cord atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 1999;66:323–30
    Abstract/FREE Full Text
  26. 26.↵
    1. Rashid W,
    2. Davies GR,
    3. Chard DT,
    4. et al
    . Upper cervical cord area in early relapsing-remitting multiple sclerosis: cross-sectional study of factors influencing cord size. J Magn Reson Imaging 2006;23:473–76
    CrossRefPubMed
  27. 27.↵
    1. Hofer S,
    2. Frahm J
    . Topography of the human corpus callosum revisited: comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 2006;32:989–94
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Duda RO,
    2. Hart PE,
    3. Stork DG
    . Pattern Classification. 2nd ed. New York: Wiley-InterScience; 2000
  29. 29.↵
    1. Bieniek M,
    2. Altmann DR,
    3. Davies GR,
    4. et al
    . Cord atrophy separates early primary progressive and relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2006;77:1036–39
    Abstract/FREE Full Text
  30. 30.↵
    1. Losseff NA,
    2. Webb SL,
    3. O'Riordan JI,
    4. et al
    . Spinal cord atrophy and disability in multiple sclerosis: a new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 1996;119(pt 3):701–08
    Abstract/FREE Full Text
  31. 31.↵
    1. Filippi M,
    2. Campi MA,
    3. Colombo B,
    4. et al
    . A spinal cord MRI study of benign and secondary progressive multiple sclerosis. J Neurol 1996;243:502–05
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Tench CR,
    2. Morgan PS,
    3. Jaspan T,
    4. et al
    . Spinal cord imaging in multiple sclerosis. J Neuroimaging 2005;15(4 suppl):94S–102S
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Stevenson VL,
    2. Leary SM,
    3. Losseff NA,
    4. et al
    . Spinal cord atrophy and disability in MS: a longitudinal study. Neurology 1998;51:234–38
    Abstract/FREE Full Text
  34. 34.↵
    1. Kidd D,
    2. Thorpe JW,
    3. Thompson AJ,
    4. et al
    . Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology 1993;43:2632–37
    Abstract/FREE Full Text
  35. 35.↵
    1. Simon JH,
    2. Jacobs LD,
    3. Campion MK,
    4. et al
    . A longitudinal study of brain atrophy in relapsing multiple sclerosis: The Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology 1999;53:139–48
    Abstract/FREE Full Text
  36. 36.↵
    1. Audoin B,
    2. Ibarrola D,
    3. Malikova I,
    4. et al
    . Onset and underpinnings of white matter atrophy at the very early stage of multiple sclerosis: a two-year longitudinal MRI/MRSI study of corpus callosum. Mult Scler 2007;13:41–51
    Abstract/FREE Full Text
  37. 37.↵
    1. Martola J,
    2. Stawiarz JL,
    3. Fredrikson S,
    4. et al
    . Progression of non-age-related callosal brain atrophy in multiple sclerosis: a 9-year longitudinal MRI study representing four decades of disease development. J Neurol Neurosurg Psychiatry 2007;78:375–80
    Abstract/FREE Full Text
  38. 38.↵
    1. Evangelou N,
    2. Esiri MM,
    3. Smith S,
    4. et al
    . Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 2000;47:391–95
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Witelson SF
    . Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 1989;112(pt 3):799–835
    Abstract/FREE Full Text
  40. 40.↵
    1. Jokinen H,
    2. Ryberg C,
    3. Kalska H,
    4. et al
    . Corpus callosum atrophy is associated with mental slowing and executive deficits in subjects with age-related white matter hyperintensities: the LADIS Study. J Neurol Neurosurg Psychiatry 2007;78:491–96
    Abstract/FREE Full Text
  41. 41.↵
    1. Huijbregts SC,
    2. Kalkers NF,
    3. de Sonneville LM,
    4. et al
    . Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS. Neurology 2004;63:335–39
    Abstract/FREE Full Text
  42. 42.↵
    1. Foong J,
    2. Rozewicz L,
    3. Chong WK,
    4. et al
    . A comparison of neuropsychological deficits in primary and secondary progressive multiple sclerosis. J Neurol 2000;247:97–101
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Comi G,
    2. Filippi M,
    3. Martinelli V,
    4. et al
    . Brain MRI correlates of cognitive impairment in primary and secondary progressive multiple sclerosis. J Neurol Sci 1995;132:222–27
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Oh J,
    2. Pelletier D,
    3. Nelson SJ
    . Corpus callosum axonal injury in multiple sclerosis measured by proton magnetic resonance spectroscopic imaging. Arch Neurol 2004;61:1081–86
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. DeLuca GC,
    2. Ebers GC,
    3. Esiri MM
    . Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts. Brain 2004;127(pt 5):1009–18
    Abstract/FREE Full Text
  46. 46.↵
    1. Gilmore CP,
    2. DeLuca GC,
    3. Bo L,
    4. et al
    . Spinal cord atrophy in multiple sclerosis caused by white matter volume loss. Arch Neurol 2005;62:1859–62
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Ann Marrie R,
    2. Rudick RA
    . Drug insight: interferon treatment in multiple sclerosis. Nat Clin Pract Neurol 2006;2:34–44
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Evangelou N,
    2. Konz D,
    3. Esiri MM,
    4. et al
    . Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 2001;124(pt 9):1813–20
    Abstract/FREE Full Text
  49. 49.↵
    1. Ciccarelli O,
    2. Werring DJ,
    3. Barker GJ,
    4. et al
    . A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging–evidence of wallerian degeneration. J Neurol 2003;250:287–92
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Coombs BD,
    2. Best A,
    3. Brown MS,
    4. et al
    . Multiple sclerosis pathology in the normal and abnormal appearing white matter of the corpus callosum by diffusion tensor imaging. Mult Scler 2004;10:392–97
    Abstract/FREE Full Text
  51. 51.↵
    1. Ge Y,
    2. Law M,
    3. Johnson G,
    4. et al
    . Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging. JMRI 2004;20:1–7
    CrossRefPubMed
  52. 52.↵
    1. Lin X,
    2. Tench CR,
    3. Morgan PS,
    4. et al
    . Use of combined conventional and quantitative MRI to quantify pathology related to cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatr 2008;79:437–41
    Abstract/FREE Full Text
  53. 53.↵
    1. Mesaros S,
    2. Rocca MA,
    3. Riccitelli G,
    4. et al
    . Corpus callosum damage and cognitive dysfunction in benign MS. Hum Brain Mapp 2009;30:2656–66
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Raininko R,
    2. Autti T,
    3. Vanhanen SL,
    4. et al
    . The normal brain stem from infancy to old age. A morphometric MRI study. Neuroradiology 1994;36:364–68
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Mitchell TN,
    2. Free SL,
    3. Merschhemke M,
    4. et al
    . Reliable callosal measurement: population normative data confirm sex-related differences. AJNR Am J Neuroradiol 2003;24:410–18
    Abstract/FREE Full Text
  56. 56.↵
    1. Sullivan EV,
    2. Rosenbloom MJ,
    3. Desmond JE,
    4. et al
    . Sex differences in corpus callosum size: relationship to age and intracranial size. Neurobiol Aging 2001;22:603–11
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 30 (9)
American Journal of Neuroradiology
Vol. 30, Issue 9
1 Oct 2009
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Regional White Matter Atrophy−Based Classification of Multiple Sclerosis in Cross-Sectional and Longitudinal Data
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M.P. Sampat, A.M. Berger, B.C. Healy, P. Hildenbrand, J. Vass, D.S. Meier, T. Chitnis, H.L. Weiner, R. Bakshi, C.R.G. Guttmann
Regional White Matter Atrophy−Based Classification of Multiple Sclerosis in Cross-Sectional and Longitudinal Data
American Journal of Neuroradiology Oct 2009, 30 (9) 1731-1739; DOI: 10.3174/ajnr.A1659

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Regional White Matter Atrophy−Based Classification of Multiple Sclerosis in Cross-Sectional and Longitudinal Data
M.P. Sampat, A.M. Berger, B.C. Healy, P. Hildenbrand, J. Vass, D.S. Meier, T. Chitnis, H.L. Weiner, R. Bakshi, C.R.G. Guttmann
American Journal of Neuroradiology Oct 2009, 30 (9) 1731-1739; DOI: 10.3174/ajnr.A1659
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Quiet PROPELLER MRI Techniques Match the Quality of Conventional PROPELLER Brain Imaging Techniques
  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
  • Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire