Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleBrain
Open Access

MR Imaging–Based Correction for Partial Volume Effect Improves Detectability of Intractable Epileptogenic Foci on Iodine 123 Iomazenil Brain SPECT Images: An Extended Study with a Larger Sample Size

H. Kato, K. Matsuda, K. Baba, E. Shimosegawa, K. Isohashi, M. Imaizumi and J. Hatazawa
American Journal of Neuroradiology December 2012, 33 (11) 2088-2094; DOI: https://doi.org/10.3174/ajnr.A3121
H. Kato
aFrom the Department of Nuclear Medicine and Tracer Kinetics (H.K., E.S., K.I., J.H.), Osaka University Graduate School of Medicine, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Matsuda
bNational Epilepsy Center (K.M., K.B.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Baba
bNational Epilepsy Center (K.M., K.B.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Shimosegawa
aFrom the Department of Nuclear Medicine and Tracer Kinetics (H.K., E.S., K.I., J.H.), Osaka University Graduate School of Medicine, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Isohashi
aFrom the Department of Nuclear Medicine and Tracer Kinetics (H.K., E.S., K.I., J.H.), Osaka University Graduate School of Medicine, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Imaizumi
cWorld Premier International Immunology Frontier Research Center (M.I.), Osaka University, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Hatazawa
aFrom the Department of Nuclear Medicine and Tracer Kinetics (H.K., E.S., K.I., J.H.), Osaka University Graduate School of Medicine, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Sata Y,
    2. Matsuda K,
    3. Mihara T,
    4. et al
    . Quantitative analysis of benzodiazepine receptor in temporal lobe epilepsy: [(125)I]iomazenil autoradiographic study of surgically resected specimens. Epilepsia 2002; 43: 1039– 48
    CrossRefPubMed
  2. 2.↵
    1. Beer HF,
    2. Blauenstein PA,
    3. Hasler PH,
    4. et al
    . In vitro and in vivo evaluation of iodine-123-Ro 16–0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med 1990; 31: 1007– 14
    Abstract/FREE Full Text
  3. 3.↵
    1. Morimoto K,
    2. Watanabe T,
    3. Ninomiya T,
    4. et al
    . Quantitative evaluation of central-type benzodiazepine receptors with [(125)I]Iomazenil in experimental epileptogenesis: II. The rat cortical dysplasia model. Epilepsy Res 2004; 61: 113– 18
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Hoffman EJ,
    2. Huang SC,
    3. Phelps ME
    . Quantitation in positron emission computed tomography. 1. Effect of object size. J Comput Assist Tomogr 1979; 3: 299– 308
    PubMedWeb of Science
  5. 5.↵
    1. Kato H,
    2. Shimosegawa E,
    3. Oku N,
    4. et al
    . MRI-based correction for partial-volume effect improves detectability of intractable epileptogenic foci on 123I-iomazenil brain SPECT images. J Nucl Med 2008; 49: 383– 89
    Abstract/FREE Full Text
  6. 6.↵
    1. Engel J Jr.
    1. Engel J Jr,
    2. Van Ness P,
    3. Rasmussen TB,
    4. et al
    . Outcome with respect to epileptic seizures. In: Engel J Jr. , ed. Surgical Treatment of the Epilepsies. New York: Raven Press; 1993: 609– 21
  7. 7.↵
    1. Chang LT
    . A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978; 25: 638– 43
    CrossRefWeb of Science
  8. 8.↵
    1. Ashburner J,
    2. Friston KJ
    . Unified segmentation. Neuroimage 2005; 26: 839– 51
    CrossRefPubMedWeb of Science
  9. 9.
    1. Good CD,
    2. Johnsrude IS,
    3. Ashburner J,
    4. et al
    . A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001; 14: 21– 36
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Ashburner J,
    2. Friston KJ
    . Voxel-based morphometry: the methods. Neuroimage 2000; 11: 805– 21
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Bencherif B,
    2. Stumpf MJ,
    3. Links JM,
    4. et al
    . Application of MRI-based partial-volume correction to the analysis of PET images of mu-opioid receptors using statistical parametric mapping. J Nucl Med 2004; 45: 402– 08
    Abstract/FREE Full Text
  12. 12.↵
    1. Matsuda H,
    2. Ohnishi T,
    3. Asada T,
    4. et al
    . Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 2003; 44: 1243– 52
    Abstract/FREE Full Text
  13. 13.↵
    1. Ibanez V,
    2. Pietrini P,
    3. Alexander GE,
    4. et al
    . Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease. Neurology 1998; 50: 1585– 93
    Abstract/FREE Full Text
  14. 14.↵
    1. Jenkinson M,
    2. Smith S
    . A global optimisation method for robust affine registration of brain images. Med Image Anal 2001; 5: 143– 56
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Zhou FW,
    2. Roper SN
    . Densities of glutamatergic and GABAergic presynaptic terminals are altered in experimental cortical dysplasia. Epilepsia 2010; 51: 1468– 76
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. White R,
    2. Hua Y,
    3. Scheithauer B,
    4. et al
    . Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 2001; 49: 67– 78
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Bonilha L,
    2. Montenegro MA,
    3. Rorden C,
    4. et al
    . Voxel-based morphometry reveals excess gray matter concentration in patients with focal cortical dysplasia. Epilepsia 2006; 47: 908– 15
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Woermann FG,
    2. Free SL,
    3. Koepp MJ,
    4. et al
    . Voxel-by-voxel comparison of automatically segmented cerebral gray matter: a rater-independent comparison of structural MRI in patients with epilepsy. Neuroimage 1999; 10: 373– 84
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Aronica E,
    2. Boer K,
    3. Becker A,
    4. et al
    . Gene expression profile analysis of epilepsy-associated gangliogliomas. Neuroscience 2008; 151: 272– 92
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Richardson MP,
    2. Hammers A,
    3. Brooks DJ,
    4. et al
    . Benzodiazepine-GABA(A) receptor binding is very low in dysembryoplastic neuroepithelial tumor: a PET study. Epilepsia 2001; 42: 1327– 34
    CrossRefPubMed
  21. 21.↵
    1. Haglund MM,
    2. Berger MS,
    3. Kunkel DD,
    4. et al
    . Changes in gamma-aminobutyric acid and somatostatin in epileptic cortex associated with low-grade gliomas. J Neurosurg 1992; 77: 209– 16
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Keller SS,
    2. Wilke M,
    3. Wieshmann UC,
    4. et al
    . Comparison of standard and optimized voxel-based morphometry for analysis of brain changes associated with temporal lobe epilepsy. Neuroimage 2004; 23: 860– 68
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Bernasconi N,
    2. Duchesne S,
    3. Janke A,
    4. et al
    . Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy. Neuroimage 2004; 23: 717– 23
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Quarantelli M,
    2. Berkouk K,
    3. Prinster A,
    4. et al
    . Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med 2004; 45: 192– 201
    Abstract/FREE Full Text
  25. 25.↵
    1. Meltzer CC,
    2. Kinahan PE,
    3. Greer PJ,
    4. et al
    . Comparative evaluation of MR-based partial-volume correction schemes for PET. J Nucl Med 1999; 40: 2053– 65
    Abstract/FREE Full Text
  26. 26.↵
    1. Rousset OG,
    2. Ma Y,
    3. Evans AC
    . Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998; 39: 904– 11
    Abstract/FREE Full Text
  27. 27.↵
    1. Soret M,
    2. Bacharach SL,
    3. Buvat I
    . Partial-volume effect in PET tumor imaging. J Nucl Med 2007; 48: 932– 45
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (11)
American Journal of Neuroradiology
Vol. 33, Issue 11
1 Dec 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MR Imaging–Based Correction for Partial Volume Effect Improves Detectability of Intractable Epileptogenic Foci on Iodine 123 Iomazenil Brain SPECT Images: An Extended Study with a Larger Sample Size
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
H. Kato, K. Matsuda, K. Baba, E. Shimosegawa, K. Isohashi, M. Imaizumi, J. Hatazawa
MR Imaging–Based Correction for Partial Volume Effect Improves Detectability of Intractable Epileptogenic Foci on Iodine 123 Iomazenil Brain SPECT Images: An Extended Study with a Larger Sample Size
American Journal of Neuroradiology Dec 2012, 33 (11) 2088-2094; DOI: 10.3174/ajnr.A3121

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MR Imaging–Based Correction for Partial Volume Effect Improves Detectability of Intractable Epileptogenic Foci on Iodine 123 Iomazenil Brain SPECT Images: An Extended Study with a Larger Sample Size
H. Kato, K. Matsuda, K. Baba, E. Shimosegawa, K. Isohashi, M. Imaizumi, J. Hatazawa
American Journal of Neuroradiology Dec 2012, 33 (11) 2088-2094; DOI: 10.3174/ajnr.A3121
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire