Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticleBrain
Open Access

Sensorimotor Cortex Gamma-Aminobutyric Acid Concentration Correlates with Impaired Performance in Patients with MS

P.K. Bhattacharyya, M.D. Phillips, L.A. Stone, R.A. Bermel and M.J. Lowe
American Journal of Neuroradiology September 2013, 34 (9) 1733-1739; DOI: https://doi.org/10.3174/ajnr.A3483
P.K. Bhattacharyya
aFrom the Imaging Institute (P.K.B., M.D.P., M.J.L.)
bLerner College of Medicine (P.K.B., R.A.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.D. Phillips
aFrom the Imaging Institute (P.K.B., M.D.P., M.J.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.A. Stone
cDepartment of Neurology (L.A.S., R.A.B.), Cleveland Clinic, Cleveland, Ohio.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.A. Bermel
bLerner College of Medicine (P.K.B., R.A.B.)
cDepartment of Neurology (L.A.S., R.A.B.), Cleveland Clinic, Cleveland, Ohio.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.J. Lowe
aFrom the Imaging Institute (P.K.B., M.D.P., M.J.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Chang L,
    2. Cloak CC,
    3. Ernst T
    . Magnetic resonance spectroscopy studies of GABA in neuropsychiatric disorders. J Clin Psychiatry 2003;64(suppl 3):7–14
  2. 2.↵
    1. Bütefisch CM,
    2. Davis BC,
    3. Wise SP,
    4. et al
    . Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci U S A 2000;97:3661–65
    Abstract/FREE Full Text
  3. 3.↵
    1. Castro-Alamancos MA,
    2. Connors BW
    . Short-term synaptic enhancement and long-term potentiation in neocortex. Proc Natl Acad Sci U S A 1996;93:1335–39
    Abstract/FREE Full Text
  4. 4.↵
    1. Castro-Alamancos MA,
    2. Donoghue JP,
    3. Connors BW
    . Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci 1995;15:5324–33
    Abstract
  5. 5.↵
    1. Floyer-Lea A,
    2. Wylezinska M,
    3. Kincses T,
    4. et al
    . Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J Neurophysiol 2006;95:1639–44
    Abstract/FREE Full Text
  6. 6.↵
    1. Levy LM,
    2. Hallett M
    . Impaired brain GABA in focal dystonia. Ann Neurol 2002;51:93–101
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Levy LM,
    2. Ziemann U,
    3. Chen R,
    4. et al
    . Rapid modulation of GABA in sensorimotor cortex induced by acute deafferentation. Ann Neurol 2002;52:755–61
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Pleger B,
    2. Schwenkreis P,
    3. Dinse HR,
    4. et al
    . Pharmacological suppression of plastic changes in human primary somatosensory cortex after motor learning. Exp Brain Res 2003;148:525–32
    PubMedWeb of Science
  9. 9.↵
    1. Stagg CJ,
    2. Bachtiar V,
    3. Johansen-Berg H
    . The role of GABA in human motor learning. Curr Biol 2011;21:480–84
    CrossRefPubMed
  10. 10.↵
    1. Reddy H,
    2. Narayanan S,
    3. Arnoutelis R,
    4. et al
    . Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 2000;123(pt 11):2314–20
    Abstract/FREE Full Text
  11. 11.↵
    1. Sailer M,
    2. Fischl B,
    3. Salat D,
    4. et al
    . Focal thinning of the cerebral cortex in multiple sclerosis. Brain 2003;126(pt 8):1734–44
    Abstract/FREE Full Text
  12. 12.↵
    1. Rocca MA,
    2. Mezzapesa DM,
    3. Falini A,
    4. et al
    . Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 2003;18:847–55
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Reddy H,
    2. Narayanan S,
    3. Woolrich M,
    4. et al
    . Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 2002;125(pt 12):2646–57
    Abstract/FREE Full Text
  14. 14.↵
    1. Rocca MA,
    2. Falini A,
    3. Colombo B,
    4. et al
    . Adaptive functional changes in the cerebral cortex of patients with nondisabling multiple sclerosis correlate with the extent of brain structural damage. Ann Neurol 2002;51:330–39
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Cutter GR,
    2. Baier ML,
    3. Rudick RA,
    4. et al
    . Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 1999;122(pt 5):871–82
    Abstract/FREE Full Text
  16. 16.↵
    1. Bhattacharyya PK,
    2. Beall EB,
    3. Lowe MJ
    . Residual water for motion identification in J-difference editing. In: Proceedings of the International Society for Magnetic Resonance Workshop on Current Concepts of Motion Correction for MRI and MRS, Kitzbühel, Tyrol, Austria. February 24–28, 2010
  17. 17.↵
    1. Bhattacharyya PK,
    2. Lowe MJ,
    3. Phillips MD
    . Spectral quality control in motion-corrupted single-voxel J-difference editing scans: an interleaved navigator approach. Magn Reson Med 2007;58:808–12
    CrossRefPubMed
  18. 18.↵
    1. Vanhamme L,
    2. van den Boogaart A,
    3. Van Huffel S
    . Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997;129:35–43
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Mathiowetz V,
    2. Volland G,
    3. Kashman N,
    4. et al
    . Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther 1985;39:386–91
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Gronwall DM
    . Paced Auditory Serial-Addition Task: a measure of recovery from concussion. Percept Mot Skills 1977;44:367–73
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Rudick R,
    2. Antel J,
    3. Confavreux C,
    4. et al
    . Recommendations from the National Multiple Sclerosis Society Clinical Outcomes Assessment Task Force. Ann Neurol 1997;42:379–82
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Fischer JS,
    2. Rudick RA,
    3. Cutter GR,
    4. et al
    . The Multiple Sclerosis Functional Composite Measure (MSFC): an integrated approach to MS clinical outcome assessment—National MS Society Clinical Outcomes Assessment Task Force. Mult Scler 1999;5:244–50
    Abstract/FREE Full Text
  23. 23.↵
    1. Mescher M,
    2. Merkle H,
    3. Kirsch J,
    4. et al
    . Simultaneous in vivo spectral editing and water suppression. NMR Biomed 1998;11:266–72
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Bhattacharyya PK,
    2. Phillips MD,
    3. Stone LA,
    4. et al
    . In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA point-resolved spectroscopy sequence. Magn Reson Imaging 2011;29:374–79
    CrossRefPubMed
  25. 25.↵
    1. Henry PG,
    2. Dautry C,
    3. Hantraye P,
    4. et al
    . Brain GABA editing without macromolecule contamination. Magn Reson Med 2001;45:517–20
    CrossRefPubMed
  26. 26.↵
    1. Terpstra M,
    2. Ugurbil K,
    3. Gruetter R
    . Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med 2002;47:1009–12
    CrossRefPubMed
  27. 27.↵
    1. Naressi A,
    2. Couturier C,
    3. Devos JM,
    4. et al
    . Java-based graphical user interface for the MRUI quantitation package. Magma 2001;12:141–52
    CrossRefPubMed
  28. 28.↵
    1. Pijnappel WW,
    2. van den Boogaart A,
    3. de Beer R,
    4. et al
    . SVD-based quantification of magnetic resonance signals. J Magn Reson 1992;97:122–34
    CrossRefWeb of Science
  29. 29.↵
    1. Zhang Y,
    2. Brady M,
    3. Smith S
    . Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20:45–57
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW,
    4. et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23(suppl 1):S208–19
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Mlynárik V,
    2. Gruber S,
    3. Moser E
    . Proton T (1) and T (2) relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 2001;14:325–31
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Bhattacharyya PK
    . Systematic error in the measurement of [GABA]/[Cr] ratio using methyl resonance of creatine. In: Proceedings of the International Society for Magnetic Resonance in Medicine Workshop on MR Spectroscopy and Neurotransmitter Function in Neuropsychiatric Disorders, Quebec City, Quebec, Canada. November 7–10, 2008
  33. 33.↵
    1. Gasparovic C,
    2. Song T,
    3. Devier D,
    4. et al
    . Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med 2006;55:1219–26
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Laule C,
    2. Vavasour IM,
    3. Moore GR,
    4. et al
    . Water content and myelin water fraction in multiple sclerosis: a T2 relaxation study. J Neurol 2004;251:284–93
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Cox RW,
    2. Hyde JS
    . Software tools for analysis and visualization of fMRI data. NMR Biomed 1997;10:171–78
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Lowe MJ,
    2. Russell DP
    . Treatment of baseline drifts in fMRI time series analysis. J Comput Assist Tomogr 1999;23:463–73
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Talairach J,
    2. Tournoux P
    . Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme Medical; 1988
  38. 38.↵
    1. Mayka MA,
    2. Corcos DM,
    3. Leurgans SE,
    4. et al
    . Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 2006;31:1453–74
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. McDonough J,
    2. Dutta R,
    3. Gudz T,
    4. et al
    . Decreases in GABA and mitochondrial genes are implicated in MS cortical pathology through microarray analysis of postmortem MS cortex. Soc Neurosci Abstr 2003;213:212
  40. 40.↵
    1. Dutta R,
    2. McDonough J,
    3. Yin X,
    4. et al
    . Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 2006;59:478–89
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Ziemann U,
    2. Muellbacher W,
    3. Hallett M,
    4. et al
    . Modulation of practice-dependent plasticity in human motor cortex. Brain 2001;124:1171–81
    Abstract/FREE Full Text
  42. 42.↵
    1. Horenstein C,
    2. Lowe MJ,
    3. Koenig KA,
    4. et al
    . Comparison of unilateral and bilateral complex finger tapping-related activation in premotor and primary motor cortex. Hum Brain Mapp 2009;30:1397–412
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Lowe MJ,
    2. Beall EB,
    3. Sakaie KE,
    4. et al
    . Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp 2008;29:818–27
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Epperson CN,
    2. Haga K,
    3. Mason GF,
    4. et al
    . Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 2002;59:851–58
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 34 (9)
American Journal of Neuroradiology
Vol. 34, Issue 9
1 Sep 2013
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Sensorimotor Cortex Gamma-Aminobutyric Acid Concentration Correlates with Impaired Performance in Patients with MS
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
P.K. Bhattacharyya, M.D. Phillips, L.A. Stone, R.A. Bermel, M.J. Lowe
Sensorimotor Cortex Gamma-Aminobutyric Acid Concentration Correlates with Impaired Performance in Patients with MS
American Journal of Neuroradiology Sep 2013, 34 (9) 1733-1739; DOI: 10.3174/ajnr.A3483

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Sensorimotor Cortex Gamma-Aminobutyric Acid Concentration Correlates with Impaired Performance in Patients with MS
P.K. Bhattacharyya, M.D. Phillips, L.A. Stone, R.A. Bermel, M.J. Lowe
American Journal of Neuroradiology Sep 2013, 34 (9) 1733-1739; DOI: 10.3174/ajnr.A3483
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Genetic ablation of GABAB receptors from oligodendrocyte precursor cells protects against demyelination in the mouse spinal cord
  • {gamma}-aminobutyrate (GAB) functions as a bioenergetic and signaling gatekeeper to control T cell inflammation
  • Crossref (33)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis
    Niamh Cawley, Bhavana S. Solanky, Nils Muhlert, Carmen Tur, Richard A. E. Edden, Claudia A. M. Wheeler-Kingshott, David H. Miller, Alan J. Thompson, Olga Ciccarelli
    Brain 2015 138 9
  • GABA levels and measures of intracortical and interhemispheric excitability in healthy young and older adults: an MRS-TMS study
    Lize Hermans, Oron Levin, Celine Maes, Peter van Ruitenbeek, Kirstin-Friederike Heise, Richard A.E. Edden, Nicolaas A.J. Puts, Ronald Peeters, Bradley R. King, Raf L.J. Meesen, Inge Leunissen, Stephan P. Swinnen, Koen Cuypers
    Neurobiology of Aging 2018 65
  • Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis
    Guanmei Cao, Richard A. E. Edden, Fei Gao, Hao Li, Tao Gong, Weibo Chen, Xiaohui Liu, Guangbin Wang, Bin Zhao
    European Radiology 2018 28 3
  • Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation From Proton Signal to Diagnostic Biomarker
    Kelley M. Swanberg, Karl Landheer, David Pitt, Christoph Juchem
    Frontiers in Neurology 2019 10
  • GABA, Glutamate and Neural Activity: A Systematic Review With Meta-Analysis of Multimodal 1H-MRS-fMRI Studies
    Amanda Kiemes, Cathy Davies, Matthew J. Kempton, Paulina B. Lukow, Carly Bennallick, James M. Stone, Gemma Modinos
    Frontiers in Psychiatry 2021 12
  • Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration
    Jinwook Kim, Sueun Lee, Sohi Kang, Sung-Ho Kim, Jong-Choon Kim, Miyoung Yang, Changjong Moon
    Neural Regeneration Research 2017 12 10
  • Thalamic GABA Predicts Fine Motor Performance in Manganese-Exposed Smelter Workers
    Zaiyang Long, Xiang-Rong Li, Jun Xu, Richard A. E. Edden, Wei-Ping Qin, Li-Ling Long, James B. Murdoch, Wei Zheng, Yue-Ming Jiang, Ulrike Dydak, Fanis Missirlis
    PLoS ONE 2014 9 2
  • GABA and glutamate levels correlate with MTR and clinical disability: Insights from multiple sclerosis
    Julia C. Nantes, Sébastien Proulx, Jidan Zhong, Scott A. Holmes, Sridar Narayanan, Robert A. Brown, Richard D. Hoge, Lisa Koski
    NeuroImage 2017 157
  • Altered hippocampal GABA and glutamate levels and uncoupling from functional connectivity in multiple sclerosis
    Fei Gao, Xuntao Yin, Richard A.E. Edden, Alan C. Evans, Junhai Xu, Guanmei Cao, Honghao Li, Muwei Li, Bin Zhao, Jian Wang, Guangbin Wang
    Hippocampus 2018 28 11
  • Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy
    Francesca Bagnato, Susan A. Gauthier, Cornelia Laule, George R. Wayne Moore, Riley Bove, Zhengxin Cai, Julien Cohen‐Adad, Daniel M. Harrison, Eric C. Klawiter, Sarah A. Morrow, Gülin Öz, William D. Rooney, Seth A. Smith, Peter A. Calabresi, Roland G. Henry, Jiwon Oh, Daniel Ontaneda, Daniel Pelletier, Daniel S. Reich, Russell T. Shinohara, Nancy L. Sicotte
    Journal of Neuroimaging 2020 30 3

More in this TOC Section

  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
  • Qualitative and Quantitative Analysis of MR Imaging Findings in Patients with Middle Cerebral Artery Stroke Implanted with Mesenchymal Stem Cells
  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire