Research ArticleAdult Brain
Open Access
Impact of Software Modeling on the Accuracy of Perfusion MRI in Glioma
L.S. Hu, Z. Kelm, P. Korfiatis, A.C. Dueck, C. Elrod, B.M. Ellingson, T.J. Kaufmann, J.M. Eschbacher, J.P. Karis, K. Smith, P. Nakaji, D. Brinkman, D. Pafundi, L.C. Baxter and B.J. Erickson
American Journal of Neuroradiology December 2015, 36 (12) 2242-2249; DOI: https://doi.org/10.3174/ajnr.A4451
L.S. Hu
aFrom the Department of Radiology (L.S.H.)
dKeller Center for Imaging Innovation (L.S.H., C.E., J.P.K., L.C.B.)
Z. Kelm
cthe Department of Radiology (Z.K., P.K., T.J.K., B.J.E.), Mayo Clinic, Rochester, Minnesota
P. Korfiatis
cthe Department of Radiology (Z.K., P.K., T.J.K., B.J.E.), Mayo Clinic, Rochester, Minnesota
A.C. Dueck
bBiostatistics (A.C.D.), Mayo Clinic, Phoenix/Scottsdale, Arizona
C. Elrod
dKeller Center for Imaging Innovation (L.S.H., C.E., J.P.K., L.C.B.)
B.M. Ellingson
hthe Department of Radiological Sciences (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, California
T.J. Kaufmann
cthe Department of Radiology (Z.K., P.K., T.J.K., B.J.E.), Mayo Clinic, Rochester, Minnesota
J.M. Eschbacher
eDepartments of Neuropathology (J.M.E.)
J.P. Karis
dKeller Center for Imaging Innovation (L.S.H., C.E., J.P.K., L.C.B.)
fNeuroradiology (J.P.K.)
K. Smith
gNeurosurgery (K.S., P.N.), Barrow Neurological Institute, Phoenix, Arizona
P. Nakaji
gNeurosurgery (K.S., P.N.), Barrow Neurological Institute, Phoenix, Arizona
D. Brinkman
ithe Department of Radiation Oncology (D.B., D.P.), Mayo Clinic, Rochester, Minnesota.
D. Pafundi
ithe Department of Radiation Oncology (D.B., D.P.), Mayo Clinic, Rochester, Minnesota.
L.C. Baxter
dKeller Center for Imaging Innovation (L.S.H., C.E., J.P.K., L.C.B.)
B.J. Erickson
cthe Department of Radiology (Z.K., P.K., T.J.K., B.J.E.), Mayo Clinic, Rochester, Minnesota

Submit a Response to This Article
Jump to comment:
No eLetters have been published for this article.
In this issue
American Journal of Neuroradiology
Vol. 36, Issue 12
1 Dec 2015
Advertisement
L.S. Hu, Z. Kelm, P. Korfiatis, A.C. Dueck, C. Elrod, B.M. Ellingson, T.J. Kaufmann, J.M. Eschbacher, J.P. Karis, K. Smith, P. Nakaji, D. Brinkman, D. Pafundi, L.C. Baxter, B.J. Erickson
Impact of Software Modeling on the Accuracy of Perfusion MRI in Glioma
American Journal of Neuroradiology Dec 2015, 36 (12) 2242-2249; DOI: 10.3174/ajnr.A4451
Impact of Software Modeling on the Accuracy of Perfusion MRI in Glioma
L.S. Hu, Z. Kelm, P. Korfiatis, A.C. Dueck, C. Elrod, B.M. Ellingson, T.J. Kaufmann, J.M. Eschbacher, J.P. Karis, K. Smith, P. Nakaji, D. Brinkman, D. Pafundi, L.C. Baxter, B.J. Erickson
American Journal of Neuroradiology Dec 2015, 36 (12) 2242-2249; DOI: 10.3174/ajnr.A4451
Jump to section
Related Articles
Cited By...
- Arterial Spin-Labeling and DSC Perfusion Metrics Improve Agreement in Neuroradiologists Clinical Interpretations of Posttreatment High-Grade Glioma Surveillance MR Imaging--An Institutional Experience
- Uncertainty Quantification in Radiogenomics: EGFR Amplification in Glioblastoma
- Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
- Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies
- Perfusion MRI-Based Fractional Tumor Burden Differentiates between Tumor and Treatment Effect in Recurrent Glioblastomas and Informs Clinical Decision-Making
- Accurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer Learning
- Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project
- Discrimination between Glioma Grades II and III Using Dynamic Susceptibility Perfusion MRI: A Meta-Analysis
This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.
More in this TOC Section
Similar Articles
Advertisement