Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleADULT BRAIN

Measurement of Cortical Thickness and Volume of Subcortical Structures in Multiple Sclerosis: Agreement between 2D Spin-Echo and 3D MPRAGE T1-Weighted Images

A. Vidal-Jordana, D. Pareto, J. Sastre-Garriga, C. Auger, E. Ciampi, X. Montalban and A. Rovira
American Journal of Neuroradiology February 2017, 38 (2) 250-256; DOI: https://doi.org/10.3174/ajnr.A4999
A. Vidal-Jordana
aFrom the Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (A.V.-J., J.S.-G., E.C., X.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Vidal-Jordana
D. Pareto
bMagnetic Resonance Unit (D.P., C.A., A.R.), Radiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Pareto
J. Sastre-Garriga
aFrom the Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (A.V.-J., J.S.-G., E.C., X.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Sastre-Garriga
C. Auger
bMagnetic Resonance Unit (D.P., C.A., A.R.), Radiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Auger
E. Ciampi
aFrom the Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (A.V.-J., J.S.-G., E.C., X.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Ciampi
X. Montalban
aFrom the Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (A.V.-J., J.S.-G., E.C., X.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Montalban
A. Rovira
bMagnetic Resonance Unit (D.P., C.A., A.R.), Radiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Rovira
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Pérez-Miralles FF,
    2. Sastre-Garriga J,
    3. Tintoré M, et al
    . Clinical impact of early brain atrophy in clinically isolated syndromes. Mult Scler 2013;19:1878–86 doi:10.1177/1352458513488231 pmid:23652215
    Abstract/FREE Full Text
  2. 2.↵
    1. Popescu V,
    2. Agosta F,
    3. Hulst HE, et al
    ; MAGNIMS Study Group. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 2013;84:1082–91 doi:10.1136/jnnp-2012-304094 pmid:23524331
    Abstract/FREE Full Text
  3. 3.↵
    1. Fischl B
    . FreeSurfer. Neuroimage 2012;62:774–81 doi:10.1016/j.neuroimage.2012.01.021 pmid:22248573
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Desikan RS,
    2. Ségonne F,
    3. Fischl B, et al
    . An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968–80 doi:10.1016/j.neuroimage.2006.01.021 pmid:16530430
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Patenaude B,
    2. Smith SM,
    3. Kennedy DN, et al
    . A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011;56:907–22 doi:10.1016/j.neuroimage.2011.02.046 pmid:21352927
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Han X,
    2. Jovicich J,
    3. Salat D, et al
    . Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 2006;32:180–94 doi:10.1016/j.neuroimage.2006.02.051 pmid:16651008
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Wonderlick J,
    2. Ziegler D,
    3. Hosseini-Varnamkhasti P, et al
    . Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging. Neuroimage 2009;44:1324–33 doi:10.1016/j.neuroimage.2008.10.037 pmid:19038349
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Govindarajan KA,
    2. Freeman L,
    3. Cai C, et al
    . Effect of intrinsic and extrinsic factors on global and regional cortical thickness. PLoS One 2014;9:e96429 doi:10.1371/journal.pone.0096429 pmid:24789100
    CrossRefPubMed
  9. 9.↵
    1. Morey RA,
    2. Selgrade ES,
    3. Wagner HR 2nd., et al
    . Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Hum Brain Mapp 2010;31:1751–62 doi:http://doi.org/10.1002/hbm.20973 pmid:20162602
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Nugent AC,
    2. Luckenbaugh DA,
    3. Wood SE, et al
    . Automated subcortical segmentation using FIRST: test-retest reliability, interscanner reliability, and comparison to manual segmentation. Hum Brain Mapp 2013;34:2313–29 doi:10.1002/hbm.22068 pmid:22815187
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Derakhshan M,
    2. Caramanos Z,
    3. Giacomini PS, et al
    . Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. Neuroimage 2010;52:1261–67 doi:10.1016/j.neuroimage.2010.05.029 pmid:20483380
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Sailer M
    . Focal thinning of the cerebral cortex in multiple sclerosis. Brain 2003;126:1734–44 doi:10.1093/brain/awg175 pmid:12805100
    Abstract/FREE Full Text
  13. 13.↵
    1. Calabrese M,
    2. Atzori M,
    3. Bernardi V, et al
    . Cortical atrophy is relevant in multiple sclerosis at clinical onset. J Neurol 2007;254:1212–20 doi:10.1007/s00415-006-0503-6 pmid:17361339
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Calabrese M,
    2. Rinaldi F,
    3. Mattisi I, et al
    . Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 2010;74:321–28 doi:10.1212/WNL.0b013e3181cbcd03 pmid:20101038
    Abstract/FREE Full Text
  15. 15.↵
    1. Calabrese M,
    2. Rinaldi F,
    3. Mattisi I, et al
    . The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology 2011;77:257–63 doi:10.1212/WNL.0b013e318220abd4 pmid:21613600
    Abstract/FREE Full Text
  16. 16.↵
    1. Calabrese M,
    2. Favaretto A,
    3. Poretto V, et al
    . Low degree of cortical pathology is associated with benign course of multiple sclerosis. Mult Scler 2013;19:904–11 doi:10.1177/1352458512463767 pmid:23069877
    Abstract/FREE Full Text
  17. 17.↵
    1. Batista S,
    2. Zivadinov R,
    3. Hoogs M, et al
    . Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J Neurol 2012;259:139–46 doi:10.1007/s00415-011-6147-1 pmid:21720932
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Benedict RH,
    2. Ramasamy D,
    3. Munschauer F, et al
    . Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy. J Neurol Neurosurg Psychiatry 2009;80:201–06 doi:10.1136/jnnp.2008.148403 pmid:18829629
    Abstract/FREE Full Text
  19. 19.↵
    1. Datta S,
    2. Staewen TD,
    3. Cofield SS, et al
    ; CombiRx Investigators Group. Regional gray matter atrophy in relapsing remitting multiple sclerosis: baseline analysis of multi-center data. Mult Scler Relat Disord 2015;4:124–36 doi:10.1016/j.msard.2015.01.004 pmid:25787188
    CrossRefPubMed
  20. 20.↵
    1. Calabrese M,
    2. Rinaldi F,
    3. Grossi P, et al
    . Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult Scler 2010;16:1220–28 doi:10.1177/1352458510376405 pmid:20670981
    Abstract/FREE Full Text
  21. 21.↵
    1. Bergsland N,
    2. Zivadinov R,
    3. Dwyer MG, et al
    . Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Mult Scler 2016;22:1327–36 doi:10.1177/1352458515616204 pmid:26541795
    Abstract/FREE Full Text
  22. 22.↵
    1. Motl RW,
    2. Hubbard EA,
    3. Sreekumar N, et al
    . Pallidal and caudate volumes correlate with walking function in multiple sclerosis. J Neurol Sci 2015;354:33–36 doi:10.1016/j.jns.2015.04.041 pmid:25959979
    CrossRefPubMed
  23. 23.↵
    1. Mugler JP 3rd.,
    2. Brookeman JR
    . Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990;15:152–57 doi:10.1002/mrm.1910150117 pmid:2374495
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Fischer HW,
    2. Rinck PA,
    3. Van Haverbeke Y, et al
    . Nuclear relaxation of human brain gray and white matter: analysis of field dependence and implications for MRI. Magn Reson Med 1990;16:317–34 doi:10.1002/mrm.1910160212 pmid:2266850
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Smith SM,
    2. Zhang Y,
    3. Jenkinson M, et al
    . Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002;17:479–89 doi:10.1006/nimg.2002.1040 pmid:12482100
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Jenkinson M,
    2. Smith S
    . A global optimisation method for robust affine registration of brain images. Med Image Anal 2001;5:143–56 doi:10.1016/S1361-8415(01)00036-6 pmid:11516708
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M, et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–41 doi:10.1006/nimg.2002.1132 pmid:12377157
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Lansley J,
    2. Mataix-Cols D,
    3. Grau M, et al
    . Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev 2013;37:819–30 doi:10.1016/j.neubiorev.2013.03.006 pmid:23518268
    CrossRefPubMed
  29. 29.↵
    1. Filippi M,
    2. Horsfield MA,
    3. Campi A, et al
    . Resolution-dependent estimates of lesion volumes in magnetic resonance imaging studies of the brain in multiple sclerosis. Ann Neurol 1995;38:749–54 doi:10.1002/ana.410380509 pmid:7486866
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Iscan Z,
    2. Jin TB,
    3. Kendrick A, et al
    . Test-retest reliability of Freesurfer measurements within and between sites: effects of visual approval process. Hum Brain Mapp 2015;36:3472–85 doi:10.1002/hbm.22856 pmid:26033168
    CrossRefPubMed
  31. 31.↵
    1. Amann M,
    2. Andĕlová M,
    3. Pfister A, et al
    . Subcortical brain segmentation of two dimensional T1-weighted data sets with FMRIB's Integrated Registration and Segmentation Tool (FIRST). Neuroimage Clin 2015;7:43–52 doi:10.1016/j.nicl.2014.11.010 pmid:25610766
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (2)
American Journal of Neuroradiology
Vol. 38, Issue 2
1 Feb 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Measurement of Cortical Thickness and Volume of Subcortical Structures in Multiple Sclerosis: Agreement between 2D Spin-Echo and 3D MPRAGE T1-Weighted Images
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A. Vidal-Jordana, D. Pareto, J. Sastre-Garriga, C. Auger, E. Ciampi, X. Montalban, A. Rovira
Measurement of Cortical Thickness and Volume of Subcortical Structures in Multiple Sclerosis: Agreement between 2D Spin-Echo and 3D MPRAGE T1-Weighted Images
American Journal of Neuroradiology Feb 2017, 38 (2) 250-256; DOI: 10.3174/ajnr.A4999

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Measurement of Cortical Thickness and Volume of Subcortical Structures in Multiple Sclerosis: Agreement between 2D Spin-Echo and 3D MPRAGE T1-Weighted Images
A. Vidal-Jordana, D. Pareto, J. Sastre-Garriga, C. Auger, E. Ciampi, X. Montalban, A. Rovira
American Journal of Neuroradiology Feb 2017, 38 (2) 250-256; DOI: 10.3174/ajnr.A4999
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Machine Learning-Based Reconstruction of 2D MRI for Quantitative Morphometry in Epilepsy
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Cerebral ADC Changes in Fabry Disease
  • ML for Glioma Molecular Subtype Prediction
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire