Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatric Neuroimaging
Open Access

Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI

Y. Zheng and X.-M. Wang
American Journal of Neuroradiology April 2017, 38 (4) 827-834; DOI: https://doi.org/10.3174/ajnr.A5066
Y. Zheng
aFrom the Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, PR China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Zheng
X.-M. Wang
aFrom the Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, PR China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X.-M. Wang
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Amaral AI,
    2. Teixeira AP,
    3. Martens S, et al
    . Metabolic alteration induced by ischemia in primary cultures of astrocytes: merging 13C-NMR spectroscopy and metabolic flux analysis. J Neurochem 2010;113:735–48 doi:10.1111/j.1471-4159.2010.06636.x pmid:20141568
    CrossRefPubMed
  2. 2.↵
    1. Dickey EJ,
    2. Long SN,
    3. Hunt RW
    . Hypoxic ischemic encephalopathy: what can we learn from humans? Vet Intern Med 2011;25:1231–40 doi:10.1111/j.1939-1676.2011.00818.x pmid:22092610
    CrossRefPubMed
  3. 3.↵
    1. Lai MC,
    2. Yang SN
    . Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol 2011;2011:609813 doi:10.1155/2011/609813 pmid:21197402
    CrossRefPubMed
  4. 4.↵
    1. Schurr A,
    2. Payne RS
    . Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study. Neuroscience 2007;147:613–19 doi:10.1016/j.neuroscience.2007.05.002 pmid:17560727
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Guo L,
    2. Wang D,
    3. Bo G, et al
    . Early identification of hypoxic-ischemic encephalopathy by combination of magnetic resonance (MR) imaging and proton MR spectroscopy. Exp Ther Med 2016;12:2835–42 doi:10.3892/etm.2016.3740 pmid:27882082
    CrossRefPubMed
  6. 6.↵
    1. Malik GK,
    2. Pandey M,
    3. Kumar R, et al
    . MR imaging and in vivo proton spectroscopy of the brain in neonates with hypoxic ischemic encephalopathy. Eur J Radiol 2002;43:6–13 doi:10.1016/S0720-048X(01)00435-1 pmid:12065114
    CrossRefPubMed
  7. 7.↵
    1. Khong PL,
    2. Tse C,
    3. Wong IY, et al
    . Diffusion-weighted imaging and proton magnetic resonance spectroscopy in perinatal hypoxic-ischemic encephalopathy: association with neuromotor outcome at 18 months of age. J Child Neurol 2004;19:872–81 pmid:15658792
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Wang H,
    2. Wang X,
    3. Guo Q
    . The correlation between DTI parameters and levels of AQP-4 in the early phases of cerebral edema after hypoxic-ischemic/reperfusion injury in piglets. Pediatr Radiol 2012;42:992–99 doi:10.1007/s00247-012-2373-7 pmid:22453895
    CrossRefPubMed
  9. 9.↵
    1. Distefano G,
    2. Praticò AD
    . Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy. Ital J Pediatr 2010;36:63 doi:10.1186/1824-7288-36-63 pmid:20846380
    CrossRefPubMed
  10. 10.↵
    1. Zhou J,
    2. Payen JF,
    3. Wilson DA, et al
    . Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003;9:1085–90 doi:10.1038/nm907 pmid:12872167
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Zhou J,
    2. Tryggestad E,
    3. Wen Z, et al
    . Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 2011;17:130–34 doi:10.1038/nm.2268 pmid:21170048
    CrossRefPubMed
  12. 12.↵
    1. Jokivarsi KT,
    2. Gröhn HI,
    3. Gröhn OH, et al
    . Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magn Reson Med 2007;57:647–53 doi:10.1002/mrm.21181 pmid:17390356
    CrossRefPubMed
  13. 13.↵
    1. Zhou J,
    2. Yan K,
    3. Zhu H
    . A simple model for understanding the origin of the amide proton transfer MRI signal in tissue. Appl Magn Reson 2012;42:393–402 doi:10.1007/s00723-011-0306-5 pmid:23243339
    CrossRefPubMed
  14. 14.↵
    1. Sun PZ,
    2. Benner T,
    3. Copen WA, et al
    . Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla. Stroke 2010;41(10 suppl):S147–51 doi:10.1161/STROKEAHA.110.595777 pmid:20876492
    Abstract/FREE Full Text
  15. 15.↵
    1. Zhou J,
    2. Wilson DA,
    3. Sun PZ, et al
    . Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 2004;51:945–52 doi:10.1002/mrm.20048 pmid:15122676
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Wang XY,
    2. Wang HW,
    3. Fu XH, et al
    . Expression of N-methyl-d-aspartate receptor 1 and its phosphorylated state in basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model: a controlled study of (1)H MRS. Eur J Paediatr Neurol 2012;16:492–500 doi:10.1016/j.ejpn.2012.01.005 pmid:22261079
    CrossRefPubMed
  17. 17.↵
    1. Munkeby BH,
    2. De Lange C,
    3. Emblem KE, et al
    . A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol 2008;49:1049–57 doi:10.1080/02841850802334224 pmid:18720081
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. LeBlanc MH,
    2. Qian XB,
    3. Cai ZW
    . The effect of glucose during ischemia on brain ATP, lactate, and glutamate in piglets. Biol Neonate 1997;72:243–54 doi:10.1159/000244490 pmid:9339296
    CrossRefPubMed
  19. 19.↵
    1. Katsura K,
    2. Asplund B,
    3. Ekholm A, et al
    . Extra- and intracellular pH in the brain during ischaemia: related to tissue lactate content in normo- and hypercapnic rats. Eur J Neurosci 1992;4:166–76 doi:10.1111/j.1460-9568.1992.tb00863.x pmid:12106379
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Vial F,
    2. Serriere S,
    3. Barantin L, et al
    . A newborn piglet study of moderate hypoxic-ischemic brain injury by 1H-MRS and MRI. Magn Reson Imaging 2004;22:457–65 doi:10.1016/j.mri.2004.01.036 pmid:15120164
    CrossRefPubMed
  21. 21.↵
    1. McCulloch KM,
    2. Raju TN,
    3. Navale S, et al
    . Developing a long-term surviving piglet model of neonatal hypoxic-ischemic encephalopathy. Neurol Res 2005;27:16–21 doi:10.1179/016164105X18124 pmid:15829153
    CrossRefPubMed
  22. 22.↵
    1. Zhao X,
    2. Wen Z,
    3. Zhang G, et al
    . Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol 2013;15:114–22 doi:10.1007/s11307-012-0563-1 pmid:22644987
    CrossRefPubMed
  23. 23.↵
    1. Zhao X,
    2. Wen Z,
    3. Huang F, et al
    . Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 2011;66:1033–41 doi:10.1002/mrm.22891 pmid:21394783
    CrossRefPubMed
  24. 24.↵
    1. Zhou J,
    2. Blakeley JO,
    3. Hua J, et al
    . Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 2008;60:842–49 doi:10.1002/mrm.21712 pmid:18816868
    CrossRefPubMed
  25. 25.↵
    1. Wen Z,
    2. Hu S,
    3. Huang F, et al
    . MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage 2010;51:616–22 doi:10.1016/j.neuroimage.2010.02.050 pmid:20188197
    CrossRefPubMed
  26. 26.↵
    1. Sun PZ,
    2. Zhou J,
    3. Sun W, et al
    . Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 2007;27:1129–36 doi:10.1038/sj.jcbfm.9600424 pmid:17133226
    CrossRefPubMed
  27. 27.↵
    1. Uria-Avellanal C,
    2. Robertson NJ
    . Na+/H+ exchangers and intracellular pH in perinatal brain injury. Transl Stroke Res 2014;5:79–98 doi:10.1007/s12975-013-0322-x pmid:24452957
    CrossRefPubMed
  28. 28.↵
    1. Hamakawa H,
    2. Murashita J,
    3. Yamada N, et al
    . Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci 2004;58:82–88 doi:10.1111/j.1440-1819.2004.01197.x pmid:14678462
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Casey JR,
    2. Grinstein S,
    3. Orlowski J
    . Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2010;11:50–61 doi:10.1038/nrm2820 pmid:19997129
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Hugg JW,
    2. Duijn JH,
    3. Matson GB, et al
    . Elevated lactate and alkalosis in chronic human brain infarction observed by 1H and 31P MR spectroscopic imaging. J Cereb Blood Flow Metab 1992;12:734–44 doi:10.1038/jcbfm.1992.104 pmid:1506441
    CrossRefPubMed
  31. 31.↵
    1. Levine SR,
    2. Helpern JA,
    3. Welch KM, et al
    . Human focal cerebral ischaemia: evaluation of brain pH and energy metabolism with P-31 NMR spectroscopy. Radiology 1992;185:537–44 doi:10.1148/radiology.185.2.1410369 pmid:1410369
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Welch KM,
    2. Levine SR,
    3. Helpern JA
    . Pathophysiological correlates of cerebral ischaemia: the significance of cellular acid base shifts. Funct Neurol 1990;5:21–31 pmid:2401427
    PubMed
  33. 33.↵
    1. Robertson NJ,
    2. Cowan FM,
    3. Cox IJ, et al
    . Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 2002;52:732–42 doi:10.1002/ana.10365 pmid:12447926
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Brown AM,
    2. Ransom BR
    . Astrocyte glycogen and brain energy metabolism. Glia 2007;55:1263–71 doi:10.1002/glia.20557 pmid:17659525
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Mehta SL,
    2. Manhas N,
    3. Raghubir R
    . Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007;54:34–66 doi:10.1016/j.brainresrev.2006.11.003 pmid:17222914
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Chiry O,
    2. Fishbein WN,
    3. Merezhinskaya N, et al
    . Distribution of the monocarboxylate transporter MCT2 in human cerebral cortex: an immunohistochemical study. Brain Res 2008;1226:61–69 doi:10.1016/j.brainres.2008.06.025 pmid:18598673
    CrossRefPubMed
  37. 37.↵
    1. Dienel GA,
    2. Hertz L
    . Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 2005;50:362–88 doi:10.1002/glia.20157 pmid:15846808
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Hertz L,
    2. Dienel GA
    . Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res 2005;79:11–18 doi:10.1002/jnr.20294 pmid:15586354
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Mabe H,
    2. Blomqvist P,
    3. Siesjö BK
    . Intracellular pH in the brain following transient ischaemia. J Cereb Blood Flow Metab 1983;3:109–14 doi:10.1038/jcbfm.1983.13 pmid:6822611
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Allen K,
    2. Busza AL,
    3. Crockard HA, et al
    . Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy, III: changes following ischaemia. J Cereb Blood Flow Metab 1988;8:816–21 doi:10.1038/jcbfm.1988.137 pmid:3192646
    CrossRefPubMed
  41. 41.↵
    1. Kauppinen RA,
    2. Williams SR
    . Cerebral energy metabolism and intracellular pH during severe hypoxia and recovery: a study using 1H, 31P, and 1H [13C] nuclear magnetic resonance spectroscopy in the guinea pig cerebral cortex in vitro. J Neurosci Res 1990;26:359–69 pmid:2398514
    PubMed
  42. 42.↵
    1. Zhu W,
    2. Zhong W,
    3. Qi J, et al
    . Proton magnetic resonance spectroscopy in neonates with hypoxic-ischemic injury and its prognostic value. Transl Res 2008;152:225–32 doi:10.1016/j.trsl.2008.09.004 pmid:19010293
    CrossRefPubMed
  43. 43.↵
    1. Groenendaal F,
    2. Veenhoven RH,
    3. van der Grond J, et al
    . Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 1994;35:148–51 doi:10.1203/00006450-199402000-00004 pmid:8165047
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Ling W,
    2. Regatte RR,
    3. Navon G, et al
    . Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 2008;105:2266–70 doi:10.1073/pnas.0707666105 pmid:18268341
    Abstract/FREE Full Text
  45. 45.↵
    1. Provencher S
    . LCModel & LCMgui User's Manual. November 23, 2016. http://lcmodel.ca/lcm-manual.shtml. Accessed December 13, 2016.
  46. 46.↵
    1. Jiru F,
    2. Skoch A,
    3. Klose U, et al
    . Error images for spectroscopic imaging by LCModel using Cramer-Rao bounds. MAGMA 2006;19:1–14 doi:10.1007/s10334-005-0018-7 pmid:16416324
    CrossRefPubMed
  47. 47.↵
    1. Atwood T,
    2. Payne VS,
    3. Zhao W, et al
    . Quantitative magnetic resonance spectroscopy reveals a potential relationship between radiation-induced changes in rat brain metabolites and cognitive impairment. Radiat Res 2007;168:574–81 doi:10.1667/RR0735.1 pmid:17973545
    CrossRefPubMed
  48. 48.↵
    1. Verma A,
    2. Saraswat VA,
    3. Radha Krishna Y, et al
    . In vivo 1H magnetic resonance spectroscopy-derived metabolite variations between acute-on-chronic liver failure and acute liver failure. Liver Int 2008;28:1095–103 doi:10.1111/j.1478-3231.2007.01648.x pmid:18266634
    CrossRefPubMed
  49. 49.↵
    1. Roohey T,
    2. Raju TN,
    3. Moustogiannis AN
    . Animal models for the study of perinatal hypoxic-ischemic encephalopathy: a critical analysis. Early Hum Dev 1997;47:115–46 doi:10.1016/S0378-3782(96)01773-2 pmid:9039963
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Zhang YF,
    2. Wang XY,
    3. Guo F, et al
    . Simultaneously changes in striatum dopaminergic and glutamatergic parameters following hypoxic-ischemic neuronal injury in newborn piglets. Eur J Paediatr Neurol 2012;16:271–78 doi:10.1016/j.ejpn.2011.05.010 pmid:21723167
    CrossRefPubMed
  51. 51.↵
    1. Zhang YF,
    2. Wang XY,
    3. Cao L, et al
    . Effects of hypoxic–ischemic brain injury on striatal dopamine transporter in newborn piglets: evaluation of 11C-CFT PET/CT for DAT quantification. Nucl Med Biol 2011;38:1205–12 doi:10.1016/j.nucmedbio.2011.05.001 pmid:21741256
    CrossRefPubMed
  52. 52.↵
    1. Seo H,
    2. Lim KH,
    3. Choi JH, et al
    . Similar neuroprotective effects of ischemic and hypoxic preconditioning on hypoxia-ischemia in the neonatal rat: a proton MRS study. Int J Dev Neurosci 2013;31:616–23 doi:10.1016/j.ijdevneu.2013.08.001 pmid:23958850
    CrossRefPubMed
  53. 53.↵
    1. Sun PZ,
    2. Zhou J,
    3. Huang J, et al
    . Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magn Reson Med 2007;57:405–10 doi:10.1002/mrm.21151 pmid:17260362
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (4)
American Journal of Neuroradiology
Vol. 38, Issue 4
1 Apr 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Y. Zheng, X.-M. Wang
Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI
American Journal of Neuroradiology Apr 2017, 38 (4) 827-834; DOI: 10.3174/ajnr.A5066

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI
Y. Zheng, X.-M. Wang
American Journal of Neuroradiology Apr 2017, 38 (4) 827-834; DOI: 10.3174/ajnr.A5066
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia
  • Lower Lactate Levels and Lower Intracellular pH in Patients with IDH-Mutant versus Wild-Type Gliomas
  • Expression Changes in Lactate and Glucose Metabolism and Associated Transporters in Basal Ganglia following Hypoxic-Ischemic Reperfusion Injury in Piglets
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • FRACTURE MR in Congenital Vertebral Anomalies
  • Comparing MRI Perfusion in Pediatric Brain Tumors
  • Sodium MRI in Pediatric Brain Tumors
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire