Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatric Neuroimaging

Brain Development in Fetuses of Mothers with Diabetes: A Case-Control MR Imaging Study

F.C. Denison, G. Macnaught, S.I.K. Semple, G. Terris, J. Walker, D. Anblagan, A. Serag, R.M. Reynolds and J.P. Boardman
American Journal of Neuroradiology May 2017, 38 (5) 1037-1044; DOI: https://doi.org/10.3174/ajnr.A5118
F.C. Denison
aFrom the Medical Research Council Centre for Reproductive Health (F.C.D., D.A., A.S., J.P.B.), University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F.C. Denison
G. Macnaught
bClinical Research Imaging Centre (G.M., S.I.K.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Macnaught
S.I.K. Semple
bClinical Research Imaging Centre (G.M., S.I.K.S.)
cUniversity/British Heart Foundation Centre for Cardiovascular Science (S.I.K.S., R.M.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.I.K. Semple
G. Terris
eSimpson Centre for Reproductive Health (G.T., J.W.), Royal Infirmary, Edinburgh, UK.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Terris
J. Walker
eSimpson Centre for Reproductive Health (G.T., J.W.), Royal Infirmary, Edinburgh, UK.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Walker
D. Anblagan
aFrom the Medical Research Council Centre for Reproductive Health (F.C.D., D.A., A.S., J.P.B.), University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
dCentre for Clinical Brain Sciences (D.A., J.P.B.), University of Edinburgh, Edinburgh, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Anblagan
A. Serag
aFrom the Medical Research Council Centre for Reproductive Health (F.C.D., D.A., A.S., J.P.B.), University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Serag
R.M. Reynolds
cUniversity/British Heart Foundation Centre for Cardiovascular Science (S.I.K.S., R.M.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.M. Reynolds
J.P. Boardman
aFrom the Medical Research Council Centre for Reproductive Health (F.C.D., D.A., A.S., J.P.B.), University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
dCentre for Clinical Brain Sciences (D.A., J.P.B.), University of Edinburgh, Edinburgh, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.P. Boardman
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Mitanchez D,
    2. Yzydorczyk C,
    3. Siddeek B, et al
    . The offspring of the diabetic mother: short- and long-term implications. Best Pract Res Clin Obstet Gynaecol 2015;29:256–69 doi:10.1016/j.bpobgyn.2014.08.004 pmid:25267399
    CrossRefPubMed
  2. 2.↵
    1. Bolaños L,
    2. Matute E,
    3. Ramírez-Dueñas Mde L, et al
    . Neuropsychological impairment in school-aged children born to mothers with gestational diabetes. J Child Neurol 2015;30:1616–24 doi:10.1177/0883073815575574 pmid:25814475
    CrossRefPubMed
  3. 3.↵
    1. Stehbens JA,
    2. Baker GL,
    3. Kitchell M
    . Outcome at ages 1, 3, and 5 years of children born to diabetic women. Am J Obstet Gynecol 1977;127:408–13 doi:10.1016/0002-9378(77)90499-9 pmid:835641
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Nomura Y,
    2. Marks DJ,
    3. Grossman B, et al
    . Exposure to gestational diabetes mellitus and low socioeconomic status: effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch Pediatr Adolesc Med 2012;166:337–43 doi:10.1001/archpediatrics.2011.784 pmid:22213602
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Temple RC,
    2. Hardiman M,
    3. Pellegrini M, et al
    . Cognitive function in 6- to 12-year-old offspring of women with Type 1 diabetes. Diabet Med 2011;28:845–48 doi:10.1111/j.1464-5491.2011.03285.x pmid:21395676
    CrossRefPubMed
  6. 6.↵
    1. Dionne G,
    2. Boivin M,
    3. Séguin JR, et al
    . Gestational diabetes hinders language development in offspring. Pediatrics 2008;122:e1073–79 doi:10.1542/peds.2007-3028 pmid:18977957
    Abstract/FREE Full Text
  7. 7.↵
    1. Kalhan S,
    2. Parimi P
    . Gluconeogenesis in the fetus and neonate. Semin Perinatol 2000;24:94–106 doi:10.1053/sp.2000.6360 pmid:10805165
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Pagán A,
    2. Prieto-Sánchez MT,
    3. Blanco-Carnero JE, et al
    . Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus. Am J Physiol Endocrinol Metab 2013;305:E826–33 doi:10.1152/ajpendo.00291.2013 pmid:23921142
    Abstract/FREE Full Text
  9. 9.↵
    1. Larqué E,
    2. Demmelmair H,
    3. Gil-Sánchez A, et al
    . Placental transfer of fatty acids and fetal implications. Am J Clin Nutr 2011;94(6 suppl):1908S–13S doi:10.3945/ajcn.110.001230 pmid:21562082
    Abstract/FREE Full Text
  10. 10.↵
    1. Limperopoulos C,
    2. Tworetzky W,
    3. McElhinney DB, et al
    . Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 2010;121:26–33 doi:10.1161/CIRCULATIONAHA.109.865568 pmid:20026783
    Abstract/FREE Full Text
  11. 11.↵
    1. Hoffmann C,
    2. Grossman R,
    3. Bokov I, et al
    . Effect of cytomegalovirus infection on temporal lobe development in utero: quantitative MRI studies. Eur Neuropsychopharmacol 2010;20:848–54 doi:10.1016/j.euroneuro.2010.08.006 pmid:20833515
    CrossRefPubMed
  12. 12.↵
    1. Erdem G,
    2. Celik O,
    3. Hascalik S, et al
    . Diffusion-weighted imaging evaluation of subtle cerebral microstructural changes in intrauterine fetal hydrocephalus. Magn Reson Imaging 2007;25:1417–22 doi:10.1016/j.mri.2007.03.028 pmid:17513078
    CrossRefPubMed
  13. 13.↵
    1. Pier DB,
    2. Levine D,
    3. Kataoka ML, et al
    . Magnetic resonance volumetric assessments of brains in fetuses with ventriculomegaly correlated to outcomes. J Ultrasound Med 2011;30:595–603 doi:10.7863/jum.2011.30.5.595 pmid:21527607
    Abstract/FREE Full Text
  14. 14.↵
    1. Egaña-Ugrinovic G,
    2. Sanz-Cortes M,
    3. Figueras F, et al
    . Fetal MRI insular cortical morphometry and its association with neurobehavior in late-onset small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 2014;44:322–29 doi:10.1002/uog.13360 pmid:24616027
    CrossRefPubMed
  15. 15.↵
    1. Masoller N,
    2. Sanz-Cortés M,
    3. Crispi F, et al
    . Severity of fetal brain abnormalities in congenital heart disease in relation to the main expected pattern of in utero brain blood supply. Fetal Diagn Ther 2016;39:269–78 doi:10.1159/000439527 pmid:26613580
    CrossRefPubMed
  16. 16.↵
    1. Sanz Cortes M,
    2. Bargallo N,
    3. Arranz A, et al
    . Feasibility and success rate of a fetal MRI and MR spectroscopy research protocol performed at term using a 3.0-Tesla scanner. Fetal Diagn Ther 2016 May 27. [Epub ahead of print] doi:10.1159/000445947 pmid:27230519
    CrossRefPubMed
  17. 17.↵
    1. Sanz-Cortes M,
    2. Egaña-Ugrinovic G,
    3. Simoes RV, et al
    . Association of brain metabolism with sulcation and corpus callosum development assessed by MRI in late-onset small fetuses. Am J Obstet Gynecol 2015;212:804 e1–8 doi:10.1016/j.ajog.2015.01.041 pmid:25640049
    CrossRefPubMed
  18. 18.↵
    1. Sanz-Cortes M,
    2. Simoes RV,
    3. Bargallo N, et al
    . Proton magnetic resonance spectroscopy assessment of fetal brain metabolism in late-onset ‘small for gestational age’ versus ‘intrauterine growth restriction’ fetuses. Fetal Diagn Ther 2015;37:108–16 doi:10.1159/000365102 pmid:25115414
    CrossRefPubMed
  19. 19.↵
    1. Simões RV,
    2. Sanz-Cortes M,
    3. Muñoz-Moreno E, et al
    . Feasibility and technical features of fetal brain magnetic resonance spectroscopy in 1.5 T scanners. Am J Obstet Gynecol 2015;213:741–42 doi:10.1016/j.ajog.2015.06.033 pmid:26116100
    CrossRefPubMed
  20. 20.↵
    1. Taylor-Clarke M
    . Re: mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth. N. Masoller, M. Sanz-Cortés, F. Crispi, O. Gómez, M. Bennasar, G. Egaña-Ugrinovic, N. Bargalló, J. M. Martínez and E. Gratacós. Ultrasound Obstet Gynecol 2016; 47: 65–73. Ultrasound Obstet Gynecol 2016;47:15 doi:10.1002/uog.15825 pmid:26731037
    CrossRefPubMed
  21. 21.↵
    1. Victoria T,
    2. Johnson AM,
    3. Edgar JC, et al
    . Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 2016;206:195–201 doi:10.2214/AJR.14.14205 pmid:26700352
    CrossRefPubMed
  22. 22.↵
    1. Van Kooij BJ,
    2. Benders MJ,
    3. Anbeek P, et al
    . Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev Med Child Neurol 2012;54:260–66 doi:10.1111/j.1469-8749.2011.04168.x pmid:22211363
    CrossRefPubMed
  23. 23.↵
    1. Hanrahan JD,
    2. Cox IJ,
    3. Azzopardi D, et al
    . Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol 1999;41:76–82 doi:10.1017/S0012162299000171 pmid:10075092
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Amess PN,
    2. Penrice J,
    3. Wylezinska M, et al
    . Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol 1999;41:436–45 pmid:10454226
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Filippi CG,
    2. Uluğ AM,
    3. Deck MD, et al
    . Developmental delay in children: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol 2002;23:882–88 pmid:12006297
    Abstract/FREE Full Text
  26. 26.↵
    1. Counsell SJ,
    2. Allsop JM,
    3. Harrison MC, et al
    . Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003;112(1 pt 1):1–7 doi:10.1542/peds.112.1.1 pmid:12837859
    Abstract/FREE Full Text
  27. 27.↵
    1. Cavalleri F,
    2. Lugli L,
    3. Pugliese M, et al
    . Prognostic value of diffusion-weighted imaging summation scores or apparent diffusion coefficient maps in newborns with hypoxic-ischemic encephalopathy. Pediatr Radiol 2014;44:1141–54 doi:10.1007/s00247-014-2945-9 pmid:24715056
    CrossRefPubMed
  28. 28.↵
    1. Rutherford M,
    2. Biarge MM,
    3. Allsop , et al
    . MRI of perinatal brain injury. Pediatr Radiol 2010;40:819–33 doi:10.1007/s00247-010-1620-z pmid:20432000
    CrossRefPubMed
  29. 29.↵
    1. Boardman JP,
    2. Counsell SJ,
    3. Rueckert D, et al
    . Early growth in brain volume is preserved in the majority of preterm infants. Ann Neurol 2007;62:185–92 doi:10.1002/ana.21171 pmid:17696128
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Inder TE,
    2. Warfield SK,
    3. Wang H, et al
    . Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005;115:286–94 doi:10.1542/peds.2004-0326 pmid:15687434
    Abstract/FREE Full Text
  31. 31.↵
    1. Boardman JP,
    2. Craven C,
    3. Valappil S, et al
    . A common neonatal image phenotype predicts adverse neurodevelopmental outcome in children born preterm. Neuroimage 2010;52:409–14 doi:10.1016/j.neuroimage.2010.04.261 pmid:20451627
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Ullman H,
    2. Spencer-Smith M,
    3. Thompson DK, et al
    . Neonatal MRI is associated with future cognition and academic achievement in preterm children. Brain 2015;138(pt 11):3251–62 doi:10.1093/brain/awv244 pmid:26329284
    Abstract/FREE Full Text
  33. 33.↵
    Scottish Intercollegiate Guidelines Network. Management of diabetes: a national clinical guideline, 2014. Edinburgh. http://www.sign.ac.uk/pdf/sign116.pdf. Accessed May 30, 2016.
  34. 34.↵
    1. Macnaught G,
    2. Gray C,
    3. Walker J, et al
    . (1)H MRS: a potential biomarker of in utero placental function. NMR Biomed 2015;28:1275–82 doi:10.1002/nbm.3370 pmid:26313636
    CrossRefPubMed
  35. 35.↵
    1. Ratiney H,
    2. Sdika M,
    3. Coenradie Y, et al
    . Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed 2005;18:1–13 doi:10.1002/nbm.895 pmid:15660450
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Horton MK,
    2. Margolis AE,
    3. Tang C, et al
    . Neuroimaging is a novel tool to understand the impact of environmental chemicals on neurodevelopment. Curr Opin Pediatr 2014;26:230–36 doi:10.1097/MOP.0000000000000074 pmid:24535497
    CrossRefPubMed
  37. 37.↵
    1. Spader HS,
    2. Ellermeier A,
    3. O'Muircheartaigh J, et al
    . Advances in myelin imaging with potential clinical application to pediatric imaging. Neurosurg Focus 2013;34:E9 doi:10.3171/2013.1.FOCUS12426 pmid:23544415
    CrossRefPubMed
  38. 38.↵
    1. Boardman JP,
    2. Counsell SJ,
    3. Rueckert D, et al
    . Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry. Neuroimage 2006;32:70–78 doi:10.1016/j.neuroimage.2006.03.029 pmid:16675269
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Rousseau F,
    2. Oubel E,
    3. Pontabry J, et al
    . BTK: an open-source toolkit for fetal brain MR image processing. Comput Methods Programs Biomed 2013;109:65–73 doi:10.1016/j.cmpb.2012.08.007 pmid:23036854
    CrossRefPubMed
  40. 40.↵
    1. Serag A,
    2. Aljabar P,
    3. Ball G, et al
    . Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Neuroimage 2012;59:2255–65 doi:10.1016/j.neuroimage.2011.09.062 pmid:21985910
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Serag A,
    2. Kyriakopoulou V,
    3. Rutherford MA, et al
    . A multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates. Ann BMVA 2012;2012:1–14. http://www.bmva.org/annals/2012/2012-0003.pdf.
  42. 42.↵
    1. Billingham SA,
    2. Whitehead AL,
    3. Julious SA
    . An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom Clinical Research Network database. BMC Med Res Methodol 2013;13:104 doi:10.1186/1471-2288-13-104 pmid:23961782
    CrossRefPubMed
  43. 43.↵
    1. Whitehead AL,
    2. Julious SA,
    3. Cooper CL, et al
    . Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Methods Med Res 2016;25:1057–73 doi:10.1177/0962280215588241 pmid:26092476
    CrossRefPubMed
  44. 44.↵
    1. Santhakumari R,
    2. Reddy IY,
    3. Archana R
    . Effect of type 2 diabetes mellitus on brain metabolites by using proton magnetic resonance spectroscopy: a systematic review. Int J Pharma Bio Sci 2014;5:1118–23 pmid:25568610
    PubMed
  45. 45.↵
    1. Cannie M,
    2. De Keyzer F,
    3. Meersschaert J, et al
    . A diffusion-weighted template for gestational age-related apparent diffusion coefficient values in the developing fetal brain. Ultrasound Obstet Gynecol 2007;30:318–24 doi:10.1002/uog.4078 pmid:17688307
    CrossRefPubMed
  46. 46.↵
    1. Kok RD,
    2. van den Berg PP,
    3. van den Bergh AJ, et al
    . Maturation of the human fetal brain as observed by 1H MR spectroscopy. Magn Reson Med 2002;48:611–16 doi:10.1002/mrm.10264 pmid:12353277
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Righini A,
    2. Bianchini E,
    3. Parazzini C, et al
    . Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. AJNR Am J Neuroradiol 2003;24:799–804 pmid:12748074
    Abstract/FREE Full Text
  48. 48.↵
    1. Wardlaw JM,
    2. Brindle W,
    3. Casado AM, et al
    ; SINAPSE Collaborative Group. A systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and research. Eur Radiol 2012;22:2295–303 doi:10.1007/s00330-012-2500-8 pmid:22684343
    CrossRefPubMed
  49. 49.↵
    1. Alvarez-Linera J
    . 3T MRI: advances in brain imaging. Eur J Radiol 2008;67:415–26 doi:10.1016/j.ejrad.2008.02.045 pmid:18455895
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Azzopardi D,
    2. Robertson NJ,
    3. Bainbridge A, et al
    . Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial. Lancet Neurol 2015 Dec 18. [Epub ahead of print] doi:10.1016/S1474-4422(15)00347-6 pmid:26708675
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (5)
American Journal of Neuroradiology
Vol. 38, Issue 5
1 May 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Brain Development in Fetuses of Mothers with Diabetes: A Case-Control MR Imaging Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
F.C. Denison, G. Macnaught, S.I.K. Semple, G. Terris, J. Walker, D. Anblagan, A. Serag, R.M. Reynolds, J.P. Boardman
Brain Development in Fetuses of Mothers with Diabetes: A Case-Control MR Imaging Study
American Journal of Neuroradiology May 2017, 38 (5) 1037-1044; DOI: 10.3174/ajnr.A5118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Brain Development in Fetuses of Mothers with Diabetes: A Case-Control MR Imaging Study
F.C. Denison, G. Macnaught, S.I.K. Semple, G. Terris, J. Walker, D. Anblagan, A. Serag, R.M. Reynolds, J.P. Boardman
American Journal of Neuroradiology May 2017, 38 (5) 1037-1044; DOI: 10.3174/ajnr.A5118
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Development of Gestational Age-Based Fetal Brain and Intracranial Volume Reference Norms Using Deep Learning
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • FRACTURE MR in Congenital Vertebral Anomalies
  • Comparing MRI Perfusion in Pediatric Brain Tumors
  • Sodium MRI in Pediatric Brain Tumors
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire