Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleAdult Brain
Open Access

Dentate Update: Imaging Features of Entities That Affect the Dentate Nucleus

K.M. Bond, W. Brinjikji, L.J. Eckel, D.F. Kallmes, R.J. McDonald and C.M. Carr
American Journal of Neuroradiology August 2017, 38 (8) 1467-1474; DOI: https://doi.org/10.3174/ajnr.A5138
K.M. Bond
aFrom Mayo Clinic School of Medicine (K.M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.M. Bond
W. Brinjikji
bthe Department of Radiology (W.B., L.J.E., D.F.K., R.J.M., C.M.C.), Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Brinjikji
L.J. Eckel
bthe Department of Radiology (W.B., L.J.E., D.F.K., R.J.M., C.M.C.), Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.J. Eckel
D.F. Kallmes
bthe Department of Radiology (W.B., L.J.E., D.F.K., R.J.M., C.M.C.), Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.F. Kallmes
R.J. McDonald
bthe Department of Radiology (W.B., L.J.E., D.F.K., R.J.M., C.M.C.), Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.J. McDonald
C.M. Carr
bthe Department of Radiology (W.B., L.J.E., D.F.K., R.J.M., C.M.C.), Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.M. Carr
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Rhoton AL Jr.
    . Cerebellum and fourth ventricle. Neurosurgery 2000;47:S7–27 doi:10.1097/00006123-200009001-00007 pmid:10983303
    CrossRefPubMed
  2. 2.↵
    1. Akakin A,
    2. Peris-Celda M,
    3. Kilic T, et al
    . The dentate nucleus and its projection system in the human cerebellum: the dentate nucleus microsurgical anatomical study. Neurosurgery 2014;74:401–24; discussion 424–25 doi:10.1227/NEU.0000000000000293 pmid:24448179
    CrossRefPubMed
  3. 3.↵
    1. O'Halloran CJ,
    2. Kinsella GJ,
    3. Storey E
    . The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neuropsychol 2012;34:35–56 doi:10.1080/13803395.2011.614599 pmid:22047489
    CrossRefPubMed
  4. 4.↵
    1. Schmahmann JD,
    2. Sherman JC
    . The cerebellar cognitive affective syndrome. Brain 1998;121(pt 4):561–79 doi:10.1093/brain/121.4.561 pmid:9577385
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Timmann D,
    2. Drepper J,
    3. Frings M, et al
    . The human cerebellum contributes to motor, emotional and cognitive associative learning: a review. Cortex 2010;46:845–57 doi:10.1016/j.cortex.2009.06.009 pmid:19665115
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Salamon N,
    2. Sicotte N,
    3. Drain A, et al
    . White matter fiber tractography and color mapping of the normal human cerebellum with diffusion tensor imaging. J Neuroradiol 2007;34:115–28 doi:10.1016/j.neurad.2007.03.002 pmid:17481730
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Suzuki L,
    2. Coulon P,
    3. Sabel-Goedknegt EH, et al
    . Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. J Neurosci 2012;32:10854–69 doi:10.1523/JNEUROSCI.0857-12.2012 pmid:22875920
    Abstract/FREE Full Text
  8. 8.↵
    1. Hoover JE,
    2. Strick PL
    . The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type I. J Neurosci 1999;19:1446–63 pmid:9952421
    Abstract/FREE Full Text
  9. 9.↵
    1. Guillan G,
    2. Mollaret P
    . Two cases of synchronous and rhythmical velopharyngo-laryngo-oculo-diaphragmatic myoclonus: the anatomical and physiopathological problem of this syndrome. Rev Neurol 1931;2:545–66
  10. 10.↵
    1. Murdoch S,
    2. Shah P,
    3. Jampana R
    . The Guillain-Mollaret triangle in action. Pract Neurol 2016;16:243–46 doi:10.1136/practneurol-2015-001142 pmid:26740379
    Abstract/FREE Full Text
  11. 11.↵
    1. Shaikh AG,
    2. Hong S,
    3. Liao K, et al
    . Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity. Brain 2010;133:923–40 doi:10.1093/brain/awp323 pmid:20080879
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Wakai S,
    2. Nagai M
    . Histological verification of microaneurysms as a cause of cerebral-hemorrhage in surgical specimens. J Neurol Neurosugr Psychiatry 1989;52:595–99 doi:10.1136/jnnp.52.5.595 pmid:2732728
    Abstract/FREE Full Text
  13. 13.↵
    1. Kanno T,
    2. Sano H,
    3. Shinomiya Y, et al
    . Role of surgery in hypertensive intracerebral hematoma: a comparative study of 305 nonsurgical and 154 surgical cases. J Neurosurg 1984;61:1091–99 doi:10.3171/jns.1984.61.6.1091 pmid:6502238
    CrossRefPubMed
  14. 14.↵
    1. Fazekas F,
    2. Kleinert R,
    3. Roob G, et al
    . Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42 pmid:10319975
    Abstract/FREE Full Text
  15. 15.↵
    1. Frytak S,
    2. Moertel CH,
    3. Childs DS
    . Neurologic toxicity associated with high-dose metronidazole therapy. Ann Intern Med 1978;88:361–62 doi:10.7326/0003-4819-88-3-361 pmid:629500
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Ahmed A,
    2. Loes DJ,
    3. Bressler EL
    . Reversible magnetic resonance imaging findings in metronidazole-induced encephalopathy. Neurology 1995;45:588–89 doi:10.1212/WNL.45.3.588 pmid:7898724
    CrossRefPubMed
  17. 17.↵
    1. Horlen CK,
    2. Seifert CF,
    3. Malouf CS
    . Toxic metronidazole-induced MRI changes. Ann Pharmacother 2000;34:1273–75 doi:10.1345/aph.10028 pmid:11098341
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Woodruff BK,
    2. Wijdicks EF,
    3. Marshall WF
    . Reversible metronidazole-induced lesions of the cerebellar dentate nuclei. N Engl J Med 2002;346:68–69 doi:10.1056/NEJM200201033460117 pmid:11778010
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. White GW,
    2. Gibby WA,
    3. Tweedle MF
    . Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Radiol 2006;41:272–78 doi:10.1097/01.rli.0000186569.32408.95 pmid:16481910
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Kanda T,
    2. Ishii K,
    3. Kawaguchi H, et al
    . High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270:834–41 doi:10.1148/radiol.13131669 pmid:24475844
    CrossRefPubMed
  21. 21.↵
    1. Radbruch A,
    2. Weberling LD,
    3. Kieslich PJ, et al
    . Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 2015;275:783–91 doi:10.1148/radiol.2015150337 pmid:25848905
    CrossRefPubMed
  22. 22.↵
    1. Stojanov D,
    2. Aracki-Trenkic A,
    3. Benedeto-Stojanov D
    . Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 2016;58:433–41 doi:10.1007/s00234-016-1658-1 pmid:26873830
    CrossRefPubMed
  23. 23.↵
    1. McDonald RJ,
    2. McDonald JS,
    3. Kallmes DF, et al
    . Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015;275:772–82 doi:10.1148/radiol.15150025 pmid:25742194
    CrossRefPubMed
  24. 24.↵
    1. Welk B,
    2. McArthur E,
    3. Morrow SA, et al
    . Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA 2016;316:96–98 doi:10.1001/jama.2016.8096 pmid:27380348
    CrossRefPubMed
  25. 25.↵
    1. Noseworthy JH,
    2. Lucchinetti C,
    3. Rodriguez M, et al
    . Multiple sclerosis. N Engl J Med 2000;343:938–52 doi:10.1056/NEJM200009283431307 pmid:11006371
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Anderson VM,
    2. Fisniku LK,
    3. Altmann DR, et al
    . MRI measures show significant cerebellar gray matter volume loss in multiple sclerosis and are associated with cerebellar dysfunction. Mult Scler 2009;15:811–17 doi:10.1177/1352458508101934 pmid:19465449
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Fisher E,
    2. Lee JC,
    3. Nakamura K, et al
    . Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008;64:255–65 doi:10.1002/ana.21436 pmid:18661561
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Gilmore CP,
    2. Geurts JJ,
    3. Evangelou N, et al
    . Spinal cord grey matter lesions in multiple sclerosis detected by post-mortem high field MR imaging. Mult Scler 2009;15:180–88 pmid:18845658
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Du SL,
    2. Sah SK,
    3. Zeng C, et al
    . Iron deposition in the gray matter in patients with relapse-remitting multiple sclerosis: a longitudinal study using three-dimensional (3D)-enhanced T2*-weighted angiography (ESWAN). Eur J Radiol 2015;84:1325–32 doi:10.1016/j.ejrad.2015.04.013 pmid:25959392
    CrossRefPubMed
  30. 30.↵
    1. Roccatagliata L,
    2. Vuolo L,
    3. Bonzano L, et al
    . Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype. Radiology 2009;251:503–10 doi:10.1148/radiol.2511081269 pmid:19401576
    CrossRefPubMed
  31. 31.↵
    1. Tjoa CW,
    2. Benedict RH,
    3. Weinstock-Guttman B, et al
    . MRI T2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis. J Neurol Sci 2005;234:17–24 doi:10.1016/j.jns.2005.02.009 pmid:15993137
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Pawate S,
    2. Wang L,
    3. Song Y, et al
    . Analysis of T2 intensity by magnetic resonance imaging of deep gray matter nuclei in multiple sclerosis patients: effect of immunomodulatory therapies. J Neuroimaging 2012;22:137–44 doi:10.1111/j.1552-6569.2011.00622.x pmid:21707826
    CrossRefPubMed
  33. 33.↵
    1. Stankiewicz JM,
    2. Neema M,
    3. Ceccarelli A
    . Iron and multiple sclerosis. Neurobiol Aging 2014;35(suppl 2):S51–58 doi:10.1016/j.neurobiolaging.2014.03.039 pmid:24929968
    CrossRefPubMed
  34. 34.↵
    1. Hogarth P
    . Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord 2015;8:1–13 doi:10.14802/jmd.14034 pmid:25614780
    CrossRefPubMed
  35. 35.↵
    1. Salomão RP,
    2. Pedroso JL,
    3. Gama MT, et al
    . A diagnostic approach for neurodegeneration with brain iron accumulation: clinical features, genetics and brain imaging. Arq Neuropsiquiatr 2016;74:587–96 doi:10.1590/0004-282X20160080 pmid:27487380
    CrossRefPubMed
  36. 36.↵
    1. Saleem S,
    2. Aslam HM,
    3. Anwar M, et al
    . Fahr's syndrome: literature review of current evidence. Orphanet J Rare Dis 2013;8:156 doi:10.1186/1750-1172-8-156 pmid:24098952
    CrossRefPubMed
  37. 37.↵
    1. Avrahami E,
    2. Cohn DF,
    3. Feibel M, et al
    . MRI demonstration and CT correlation of the brain in patients with idiopathic intracerebral calcification. J Neurol 1994;241:381–84 doi:10.1007/BF02033355 pmid:7931433
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Elshimali Y
    . The value of differential diagnosis of Fahr's disease by radiology. Internet J Radiol 2004;4. http://ispub.com/IJRA/4/1/9320. Accessed April 3, 2017.
  39. 39.↵
    1. Govindarajan A
    . Imaging in Fahr's disease: how CT and MRI differ? BMJ Case Rep 2013;2013 doi:10.1136/bcr-2013-201523 pmid:24285810
    FREE Full Text
  40. 40.↵
    1. Kobari M,
    2. Nogawa S,
    3. Sugimoto Y, et al
    . Familial idiopathic brain calcification with autosomal dominant inheritance. Neurology 1997;48:645–49 doi:10.1212/WNL.48.3.645 pmid:9065541
    Abstract/FREE Full Text
  41. 41.↵
    1. Castro-Gago M,
    2. Blanco-Barca MO,
    3. Campos-González Y, et al
    . Epidemiology of pediatric mitochondrial respiratory chain disorders in northwest Spain. Pediatr Neurol 2006;34:204–11 doi:10.1016/j.pediatrneurol.2005.07.011 pmid:16504790
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Zhu ZQ,
    2. Yao JB,
    3. Johns T, et al
    . SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 1998;20:337–43 doi:10.1038/3804 pmid:9843204
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Lee HF,
    2. Tsai CR,
    3. Chi CS, et al
    . Leigh syndrome: clinical and neuroimaging follow-up. Pediatr Neurol 2009;40:88–93 doi:10.1016/j.pediatrneurol.2008.09.020 pmid:19135620
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Finsterer J
    . Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 2008;39:223–35 doi:10.1016/j.pediatrneurol.2008.07.013 pmid:18805359
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Arii J,
    2. Tanabe Y
    . Leigh syndrome: serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol 2000;21:1502–09 pmid:11003287
    Abstract/FREE Full Text
  46. 46.↵
    1. Sonam K,
    2. Khan NA,
    3. Bindu PS, et al
    . Clinical and magnetic resonance imaging findings in patients with Leigh syndrome and SURF1 mutations. Brain Dev 2014;36:807–12 doi:10.1016/j.braindev.2013.10.012 pmid:24262866
    CrossRefPubMed
  47. 47.↵
    1. Pandolfo M
    . Friedreich ataxia: the clinical picture. J Neurol 2009;256(suppl 1):3–8 doi:10.1007/s00415-009-1002-3 pmid:19283344
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Koeppen AH
    . Friedreich's ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 2011;303:1–12 doi:10.1016/j.jns.2011.01.010 pmid:21315377
    CrossRefPubMed
  49. 49.↵
    1. Mascalchi M,
    2. Salvi F,
    3. Piacentini S, et al
    . Friedreich's ataxia: MR findings involving the cervical portion of the spinal cord. AJR Am J Roentgenol 1994;163:187–91 doi:10.2214/ajr.163.1.8010211 pmid:8010211
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Koeppen AH,
    2. Michael SC,
    3. Knutson MD, et al
    . The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins. Acta Neuropathol 2007;114:163–73 doi:10.1007/s00401-007-0220-y pmid:17443334
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Koeppen AH,
    2. Ramirez RL,
    3. Yu D, et al
    . Friedreich's ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus. Cerebellum 2012;11:845–60 doi:10.1007/s12311-012-0383-5 pmid:22562713
    CrossRefPubMed
  52. 52.↵
    1. Selvadurai LP,
    2. Harding IH,
    3. Corben LA, et al
    . Cerebral and cerebellar grey matter atrophy in Friedreich ataxia: the IMAGE-FRDA study. J Neurol 2016;263:2215–23 doi:10.1007/s00415-016-8252-7 pmid:27522354
    CrossRefPubMed
  53. 53.↵
    1. Rizzo G,
    2. Tonon C,
    3. Valentino ML, et al
    . Brain diffusion-weighted imaging in Friedreich's ataxia. Mov Disord 2011;26:705–12 doi:10.1002/mds.23518 pmid:21370259
    CrossRefPubMed
  54. 54.↵
    1. Feigenbaum A,
    2. Moore R,
    3. Clarke J, et al
    . Canavan disease: carrier-frequency determination in the Ashkenazi Jewish population and development of a novel molecular diagnostic assay. Am J Med Genet A 2004;124A:142–47 doi:10.1002/ajmg.a.20334 pmid:14699612
    CrossRefPubMed
  55. 55.↵
    1. Kronn D,
    2. Oddoux C,
    3. Phillips J, et al
    . Prevalence of Canavan disease heterozygotes in the New York metropolitan Ashkenazi Jewish population. Am J Hum Genet 1995;57:1250–52 pmid:7485179
    PubMedWeb of Science
  56. 56.↵
    1. Matalon R,
    2. Michals K,
    3. Sebesta D, et al
    . Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 1988;29:463–71 doi:10.1002/ajmg.1320290234 pmid:3354621
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Namboodiri AM,
    2. Peethambaran A,
    3. Mathew R, et al
    . Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol Cell Endocrinol 2006;252:216–23 doi:10.1016/j.mce.2006.03.016 pmid:16647192
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Brismar J,
    2. Brismar G,
    3. Gascon G, et al
    . Canavan disease: CT and MR imaging of the brain. AJNR Am J Neuroradiol 1990;11:805–10 pmid:2114773
    Abstract/FREE Full Text
  59. 59.↵
    1. Sener RN
    . Canavan disease: diffusion magnetic resonance imaging findings. J Comput Assist Tomogr 2003;27:30–33 doi:10.1097/00004728-200301000-00006 pmid:12544239
    CrossRefPubMed
  60. 60.↵
    1. McAdams HP,
    2. Geyer CA,
    3. Done SL, et al
    . CT and MR imaging of Canavan disease. AJNR Am J Neuroradiol 1990;11:397–99 pmid:2107726
    FREE Full Text
  61. 61.↵
    1. Wittsack HJ,
    2. Kugel H,
    3. Roth B, et al
    . Quantitative measurements with localized 1H MR spectroscopy in children with Canavan's disease. J Magn Reson Imaging 1996;6:889–93 doi:10.1002/jmri.1880060609 pmid:8956134
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Lindner M,
    2. Kölker S,
    3. Schulze A, et al
    . Neonatal screening for glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2004;27:851–59 doi:10.1023/B:BOLI.0000045769.96657.af pmid:15505392
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. Mohammad SA,
    2. Abdelkhalek HS,
    3. Ahmed KA, et al
    . Glutaric aciduria type 1: neuroimaging features with clinical correlation. Pediatr Radiol 2015;45:1696–705 doi:10.1007/s00247-015-3395-8 pmid:26111870
    CrossRefPubMed
  64. 64.↵
    1. Wang Q,
    2. Li X,
    3. Ding Y, et al
    . Clinical and mutational spectra of 23 Chinese patients with glutaric aciduria type 1. Brain Dev 2014;36:813–22 doi:10.1016/j.braindev.2013.11.006 pmid:24332224
    CrossRefPubMed
  65. 65.↵
    1. Brismar J,
    2. Ozand PT
    . CT and MR of the brain in glutaric acidemia type I: a review of 59 published cases and a report of 5 new patients. AJNR Am J Neuroradiol 1995;16:675–83 pmid:7611022
    Abstract
  66. 66.↵
    1. Vester ME,
    2. Visser G,
    3. Wijburg FA, et al
    . Occurrence of subdural hematomas in Dutch glutaric aciduria type 1 patients. Eur J Pediatr 2016;175:1001–06 doi:10.1007/s00431-016-2734-6 pmid:27246831
    CrossRefPubMed
  67. 67.↵
    1. Harper PA,
    2. Healy PJ,
    3. Dennis JA
    . Maple Syrup Urine Disease (Branched-Chain Ketoaciduria). New York: McGraw-Hill; 2001:1971–2006
  68. 68.↵
    1. Brismar J,
    2. Aqeel A,
    3. Brismar G, et al
    . Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. AJNR Am J Neuroradiol 1990;11:1219–28 pmid:2124065
    Abstract/FREE Full Text
  69. 69.↵
    1. Gupta AK,
    2. Chowdhury V,
    3. Khandelwal N
    . Diagnostic Radiology Paediatric Imaging. New Delhi: Jaypee Brothers Medical Publishers; 2011:522
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (8)
American Journal of Neuroradiology
Vol. 38, Issue 8
1 Aug 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dentate Update: Imaging Features of Entities That Affect the Dentate Nucleus
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K.M. Bond, W. Brinjikji, L.J. Eckel, D.F. Kallmes, R.J. McDonald, C.M. Carr
Dentate Update: Imaging Features of Entities That Affect the Dentate Nucleus
American Journal of Neuroradiology Aug 2017, 38 (8) 1467-1474; DOI: 10.3174/ajnr.A5138

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Dentate Update: Imaging Features of Entities That Affect the Dentate Nucleus
K.M. Bond, W. Brinjikji, L.J. Eckel, D.F. Kallmes, R.J. McDonald, C.M. Carr
American Journal of Neuroradiology Aug 2017, 38 (8) 1467-1474; DOI: 10.3174/ajnr.A5138
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATION:
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Structural covariation between cerebellum and cerebral cortex is atypically modulated by thalamus in autism spectrum disorder
  • Effects of Gadolinium Depositions in Vivo
  • Gadolinium Retention in the Brain: An MRI Relaxometry Study of Linear and Macrocyclic Gadolinium-Based Contrast Agents in Multiple Sclerosis
  • Novel genotype-phenotype and MRI correlations in a large cohort of patients with SPG7 mutations
  • Reversible cerebellar neurotoxicity induced by metronidazole
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • ML for Glioma Molecular Subtype Prediction
  • NCCT vs. MRI for Brain Atrophy in Acute Stroke
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire