Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Review ArticleAdult Brain
Open Access

Deep Learning in Neuroradiology

G. Zaharchuk, E. Gong, M. Wintermark, D. Rubin and C.P. Langlotz
American Journal of Neuroradiology October 2018, 39 (10) 1776-1784; DOI: https://doi.org/10.3174/ajnr.A5543
G. Zaharchuk
aFrom the Departments of Radiology (G.Z., M.W., D.R., C.P.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zaharchuk
E. Gong
bElectrical Engineering (E.G.), Stanford University and Stanford University Medical Center, Stanford, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Gong
M. Wintermark
aFrom the Departments of Radiology (G.Z., M.W., D.R., C.P.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wintermark
D. Rubin
aFrom the Departments of Radiology (G.Z., M.W., D.R., C.P.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Rubin
C.P. Langlotz
aFrom the Departments of Radiology (G.Z., M.W., D.R., C.P.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.P. Langlotz
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. LeCun Y,
    2. Bengio Y,
    3. Hinton G
    . Deep learning. Nature 2015;521:436–44 doi:10.1038/nature14539 pmid:26017442
    CrossRefPubMed
  2. 2.↵
    1. Krizhevsky A,
    2. Sutskever I,
    3. Hinton G
    . ImageNet classification with deep convolutional neural networks. http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf. Accessed January 23, 2018.
  3. 3.↵
    1. Mwangi B,
    2. Soares JC,
    3. Hasan KM
    . Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data. J Neurosci Methods 2014;236:19–25 doi:10.1016/j.jneumeth.2014.08.001 pmid:25117552
    CrossRefPubMed
  4. 4.↵
    1. Hassabis D,
    2. Kumaran D,
    3. Summerfield C, et al
    . Neuroscience-inspired artificial intelligence. Neuron 2017;95:245–58 doi:10.1016/j.neuron.2017.06.011 pmid:28728020
    CrossRefPubMed
  5. 5.↵
    1. Hubel D,
    2. Wiesel T
    . Receptive fields, binocular interaction and functional architecture of the cat's visual cortex. J Physiol (London) 1962;160:106–54 doi:10.1113/jphysiol.1962.sp006837 pmid:14449617
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Wang Z,
    2. Bovik A,
    3. Sheikh H, et al
    . Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13:600–12 doi:10.1109/TIP.2003.819861 pmid:15376593
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Zhou H,
    2. Gallo O,
    3. Frosio I, et al
    . Loss functions for image restoration with neural networks. IEEE Transactions on Computational Imaging 2017;3:47–57 doi:10.1109/TCI.2016.2644865
    CrossRef
  8. 8.↵
    1. Goodfellow I,
    2. Pouget-Abadie J,
    3. Mirza M, et al
    . Generative adversarial nets. https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf. Accessed January 23, 2018.
  9. 9.↵
    1. Srivastava N,
    2. Hinton G,
    3. Krizhevsky A, et al
    . Dropout: a simple way to prevent neural networks from overfitting. J Machine Learning Research 2014;15:1929–58
  10. 10.↵
    1. Zhu B,
    2. Liu JZ,
    3. Rosen BR, et al
    . Image reconstruction by domain transform manifold learning. https://arxiv.org/pdf/1704.08841.pdf. Accessed January 23, 2018.
  11. 11.↵
    1. Schlemper J,
    2. Caballero J,
    3. Hajnal JV, et al
    . A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 2018;37:491–503 doi:10.1109/TMI.2017.2760978 pmid:29035212
    CrossRefPubMed
  12. 12.↵
    1. Yang Y,
    2. Sun J,
    3. Li H, et al
    . Deep admm-net for compressive sensing MRI. In: Proceedings of the 30th Conference on Neural Information Processing Systems, Barcelona, Spain. December 6–10, 2016
  13. 13.↵
    1. Wang S,
    2. Su Z,
    3. Ying L, et al
    . Accelerating magnetic resonance imaging via deep learning. In: Proceedings of the IEEE 13th International Symposium on Biomedical Imaging, Prague, Czech Republic. April 9–16, 2016
  14. 14.↵
    1. Dong C,
    2. Loy C,
    3. He K, et al
    . Learning a deep convolutional network for image super-resolution. In: Proceedings of the European Conference on Computer Vision, Zurich, Switzerland. September 6–12, 2014
  15. 15.↵
    1. Chen H,
    2. Zhang Y,
    3. Kalra MK, et al
    . Low-dose CT with a residual encoder-decoder convolutional neural network (RED-CNN). https://arxiv.org/pdf/1702.00288.pdf. Accessed January 23, 2018.
  16. 16.↵
    1. Bahrami K,
    2. Shi F,
    3. Zong X, et al
    . Reconstruction of 7T-like images from 3T MRI. IEEE Trans Med Imaging 2016;35:2085–97 doi:10.1109/TMI.2016.2549918 pmid:27046894
    CrossRefPubMed
  17. 17.↵
    1. Golkov V,
    2. Dosovitskiy A,
    3. Sperl JI, et al
    . Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 2016;35:1344–51 doi:10.1109/TMI.2016.2551324 pmid:27071165
    CrossRefPubMed
  18. 18.↵
    1. Gong E,
    2. Pauly J,
    3. Zaharchuk G
    . Boosting SNR and/or resolution of arterial spin label (ASL) imaging using multi-contrast approaches with multi-lateral guided filter and deep networks. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, Hawaii. April 22–27, 2017
  19. 19.↵
    1. Zhou S,
    2. Greenspan H,
    3. Shen D
    1. Vemulapalli R,
    2. Nguyen H,
    3. Zhou S
    . Deep networks and mutual information maximization for cross-modal medical image synthesis. In: Zhou S, Greenspan H, Shen D, eds. Deep Learning for Medical Image Analysis. London: Elsevier; 2017
  20. 20.↵
    1. Liu F,
    2. Jang H,
    3. Kijowski R, et al
    . Deep learning MR-based attenuation correction for PET/MRI. Radiology 2018;286:676–84 doi:10.1148/radiol.2017170700 pmid:28925823
    CrossRefPubMed
  21. 21.↵
    1. Han X
    . MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 2017;44:1408–19 doi:10.1002/mp.12155 pmid:28192624
    CrossRefPubMed
  22. 22.↵
    1. Li R,
    2. Zhang W,
    3. Suk HI, et al
    . Deep learning based imaging data completion for improved brain disease diagnosis. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Boston, Massachusetts. September 14–18, 2014;17:305–12
  23. 23.↵
    1. Wachinger C,
    2. Reuter M,
    3. Klein T
    . DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage 2018;170:434–45 doi:10.1016/j.neuroimage.2017.02.035 pmid:28223187
    CrossRefPubMed
  24. 24.↵
    1. Mehta R,
    2. Majumdar A,
    3. Sivaswamy J
    . BrainSegNet: a convolutional neural network architecture for automated segmentation of human brain structures. J Med Imaging (Bellingham) 2017;4:024003 doi:10.1117/1.JMI.4.2.024003 pmid:28439524
    CrossRefPubMed
  25. 25.↵
    1. Chen H,
    2. Dou Q,
    3. Yu L, et al
    . VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage 2018;170:446–55 doi:10.1016/j.neuroimage.2017.04.041 pmid:28445774
    CrossRefPubMed
  26. 26.↵
    1. Dou Q,
    2. Chen H,
    3. Yu L, et al
    . Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 2016;35:1182–95 doi:10.1109/TMI.2016.2528129 pmid:26886975
    CrossRefPubMed
  27. 27.↵
    1. Chen L,
    2. Bentley P,
    3. Rueckert D
    . Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. Neuroimage Clin 2017;15:633–43 doi:10.1016/j.nicl.2017.06.016 pmid:28664034
    CrossRefPubMed
  28. 28.↵
    1. Maier O,
    2. Schröder C,
    3. Forkert ND, et al
    . Classifiers for ischemic stroke lesion segmentation: a comparison study. PloS One 2015;10:e0145118 doi:10.1371/journal.pone.0145118 pmid:26672989
    CrossRefPubMed
  29. 29.↵
    1. Nielsen A,
    2. Mouridsen K,
    3. Hansen M, et al
    . Deep learning: utilizing the potential in data bases to predict individual outcome in acute stroke. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, Hawaii. April 22–27, 2017;5665
  30. 30.↵
    1. Menze BH,
    2. Jakab A,
    3. Bauer S, et al
    . The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 2015;34:1993–2024 doi:10.1109/TMI.2014.2377694 pmid:25494501
    CrossRefPubMed
  31. 31.↵
    1. Chang P
    . Fully convolutional deep residual neural networks for brain tumor segmentation. In: Proceedings of the International Workshop on Brain Lesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Athens, Greece. October 17, 2016;108–18
  32. 32.↵
    1. Korfiatis P,
    2. Kline TL,
    3. Erickson BJ
    . Automated segmentation of hyperintense regions in FLAIR MRI using deep learning. Tomography 2016;2:334–40 doi:10.18383/j.tom.2016.00166 pmid:28066806
    CrossRefPubMed
  33. 33.↵
    1. Gao XW,
    2. Hui R,
    3. Tian Z
    . Classification of CT brain images based on deep learning networks. Comput Methods Programs Biomed 2017;138:49–56 doi:10.1016/j.cmpb.2016.10.007 pmid:27886714
    CrossRefPubMed
  34. 34.↵
    1. Shi J,
    2. Zheng X,
    3. Li Y, et al
    . Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease. IEEE J Biomed Health Inform 2018;22:173–83 doi:10.1109/JBHI.2017.2655720 pmid:28113353
    CrossRefPubMed
  35. 35.↵
    1. Suk HI,
    2. Lee SW,
    3. Shen D
    ; Alzheimer's Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis. Brain Struct Funct 2016;221:2569–87 doi:10.1007/s00429-015-1059-y pmid:25993900
    CrossRefPubMed
  36. 36.↵
    1. Scherer M,
    2. Cordes J,
    3. Younsi A, et al
    . Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke 2016;47:2776–82 doi:10.1161/STROKEAHA.116.013779 pmid:27703089
    Abstract/FREE Full Text
  37. 37.↵
    1. Al-Ayyoub M,
    2. Alawad D,
    3. Al-Darabsah K, et al
    . Automatic detection and classification of brain hemorrhages. WSEAS Transactions on Computers 2013;10:395–405
  38. 38.↵
    1. Phong T,
    2. Duong H,
    3. Nguyen H, et al
    . Brain hemorrhage diagnosis by using deep learning. In: Proceedings of the International Conference on Machine Learning and Soft Computing, Ho Chi Minh City, Vietnam. January 13–16, 2017
  39. 39.↵
    1. Esteva A,
    2. Kuprel B,
    3. Novoa RA, et al
    . Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115–18 doi:10.1038/nature21056 pmid:28117445
    CrossRefPubMed
  40. 40.↵
    1. Plis SM,
    2. Hjelm DR,
    3. Salakhutdinov R, et al
    . Deep learning for neuroimaging: a validation study. Front Neurosci 2014;8:229 doi:10.3389/fnins.2014.00229 pmid:25191215
    CrossRefPubMed
  41. 41.↵
    1. Lee JH,
    2. Wong E,
    3. Bandettini P
    . Temporal-autoencoding neural network revealed the underlying functional dynamics of fMRI data: evaluation using the Human Connectome Project data. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, Hawaii. April 22–27, 2017
  42. 42.↵
    1. Zhang Z,
    2. Xie Y,
    3. Xing F, et al
    . MDNet: a semantically and visually interpretable medical image diagnosis network. http://arxiv.org/pdf/1707.02485.pdf. Accessed January 23, 2018.
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (10)
American Journal of Neuroradiology
Vol. 39, Issue 10
1 Oct 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Learning in Neuroradiology
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
G. Zaharchuk, E. Gong, M. Wintermark, D. Rubin, C.P. Langlotz
Deep Learning in Neuroradiology
American Journal of Neuroradiology Oct 2018, 39 (10) 1776-1784; DOI: 10.3174/ajnr.A5543

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Learning in Neuroradiology
G. Zaharchuk, E. Gong, M. Wintermark, D. Rubin, C.P. Langlotz
American Journal of Neuroradiology Oct 2018, 39 (10) 1776-1784; DOI: 10.3174/ajnr.A5543
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Explainable AI for dynamic brain imaging: evaluation and cellular-to-network investigation of E/I imbalance in autism
  • Unmet Needs in Spondyloarthritis: Imaging in Axial Spondyloarthritis
  • AI-based X-ray fracture analysis of the distal radius: accuracy between representative classification, detection and segmentation deep learning models for clinical practice
  • Deep Learning-Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial
  • Critical Appraisal of Artificial Intelligence-Enabled Imaging Tools Using the Levels of Evidence System
  • Critical Appraisal of Artificial Intelligence-Enabled Imaging Tools Using the Levels of Evidence System
  • Clinical Validation of Segmentation-Based Detection of Glioma Progression
  • Imaging of the pial arterial vasculature of the human brain in vivo using high-resolution 7T time-of-flight angiography
  • Evaluation of Artificial Intelligence-Powered Identification of Large-Vessel Occlusions in a Comprehensive Stroke Center
  • BrainNET: Inference of brain network topology using Machine Learning
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire