Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatric Neuroimaging
Open Access

Expression Changes in Lactate and Glucose Metabolism and Associated Transporters in Basal Ganglia following Hypoxic-Ischemic Reperfusion Injury in Piglets

Y. Zheng and X.-M. Wang
American Journal of Neuroradiology March 2018, 39 (3) 569-576; DOI: https://doi.org/10.3174/ajnr.A5505
Y. Zheng
aFrom the Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, PR China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Zheng
X.-M. Wang
aFrom the Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, PR China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X.-M. Wang
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Itoh Y,
    2. Esaki T,
    3. Shimoji K, et al
    . Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci U S A 2003;100:4879–84 doi:10.1073/pnas.0831078100 pmid:12668764
    Abstract/FREE Full Text
  2. 2.↵
    1. Bouzat P,
    2. Oddo M
    . Lactate and the injured brain: friend or foe? Curr Opin Crit Care 2014;20:133–40 doi:10.1097/MCC.0000000000000072 pmid:24561705
    CrossRefPubMed
  3. 3.↵
    1. Genc S,
    2. Kurnaz IA,
    3. Ozilgen M
    . Astrocyte-neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions–in silico study supported by in vitro expression data. BMC Syst Biol 2011;5:162 doi:10.1186/1752-0509-5-162 pmid:21995951
    CrossRefPubMed
  4. 4.↵
    1. Halestrap AP,
    2. Price NT
    . The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 1999;343(Pt 2):281–99 pmid:10510291
    Abstract/FREE Full Text
  5. 5.↵
    1. Hertz L,
    2. Dienel GA
    . Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res 2005;79:11–18 doi:10.1002/jnr.20294 pmid:15586354
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Chiry O,
    2. Fishbein WN,
    3. Merezhinskaya N, et al
    . Distribution of the monocarboxylate transporter MCT2 in human cerebral cortex: an immunohistochemical study. Brain Res 2008;1226:61–69 doi:10.1016/j.brainres.2008.06.025 pmid:18598673
    CrossRefPubMed
  7. 7.↵
    1. Amaral AI,
    2. Teixeira AP,
    3. Martens S, et al
    . Metabolic alterations induced by ischemia in primary cultures of astrocytes: merging 13C NMR spectroscopy and metabolic flux analysis. J Neurochem 2010;113:735–48 doi:10.1111/j.1471-4159.2010.06636.x pmid:20141568
    CrossRefPubMed
  8. 8.↵
    1. Pellerin L,
    2. Bouzier-Sore AK,
    3. Aubert A, et al
    . Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 2007;55:1251–62 doi:10.1002/glia.20528 pmid:17659524
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Pellerin L,
    2. Magistretti PJ
    . How to balance the brain energy budget while spending glucose differently. J Physiology 2003;546(Pt 2):325 doi:10.1113/jphysiol.2002.035105 pmid:12527720
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Wang XY,
    2. Wang HW,
    3. Fu XH, et al
    . Expression of N-methyl-d-aspartate receptor 1 and its phosphorylated state in basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model: a controlled study of (1)H MRS. Eur J Paediatr Neurol 2012;16:492–500 doi:10.1016/j.ejpn.2012.01.005 pmid:22261079
    CrossRefPubMed
  11. 11.↵
    1. Broad KD,
    2. Fierens I,
    3. Fleiss B, et al
    . Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis 2016;87:29–38 doi:10.1016/j.nbd.2015.12.001 pmid:26687546
    CrossRefPubMed
  12. 12.↵
    1. Provencher SW
    . Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 2001;14:260–64 doi:10.1002/nbm.698 pmid:11410943
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Wang H,
    2. Wang X,
    3. Guo Q
    . The correlation between DTI parameters and levels of AQP-4 in the early phases of cerebral edema after hypoxic-ischemic/reperfusion injury in piglets. Pediatr Radiol 2012;42:992–99 doi:10.1007/s00247-012-2373-7 pmid:22453895
    CrossRefPubMed
  14. 14.↵
    1. Lange T,
    2. Dydak U,
    3. Roberts TP, et al
    . Pitfalls in lactate measurements at 3T. AJNR Am J Neuroradiol 2006;27:895–901 pmid:16611787
    Abstract/FREE Full Text
  15. 15.↵
    1. Thoren AE,
    2. Helps SC,
    3. Nilsson M, et al
    . The metabolism of C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats. J Neurochem 2006;97:968–78 doi:10.1111/j.1471-4159.2006.03778.x pmid:16606370
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Pellerin L,
    2. Pellegri G,
    3. Bittar PG, et al
    . Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 1998;20:291–99 doi:10.1159/000017324 pmid:9778565
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Cater HL,
    2. Chandratheva A,
    3. Benham CD, et al
    . Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J Neurochem 2003;87:1381–90 doi:10.1046/j.1471-4159.2003.02100.x pmid:14713294
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Espinoza-Rojo M,
    2. Iturralde-Rodriguez KI,
    3. Chánez-Cárdenas ME, et al
    . Glucose transporters regulation on ischemic brain: possible role as therapeutic target. Cent Nerv Syst Agents Med Chem 2010;10:317–25 doi:10.2174/187152410793429755 pmid:20868355
    CrossRefPubMed
  19. 19.↵
    1. Zheng Y,
    2. Wang XM
    . Measurement of lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model using MRI. AJNR Am J Neuroradiol 2017;38:827–34 doi:10.3174/ajnr.A5066 pmid:28154122
    Abstract/FREE Full Text
  20. 20.↵
    1. Bergersen LH
    . Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 2007;145:11–19 doi:10.1016/j.neuroscience.2006.11.062 pmid:17218064
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Gao C,
    2. Zhou L,
    3. Zhu W, et al
    . Monocarboxylate transporter-dependent mechanism confers resistance to oxygen- and glucose-deprivation injury in astrocyte-neuron co-cultures. Neurosci Lett 2015;594:99–104 doi:10.1016/j.neulet.2015.03.062 pmid:25827488
    CrossRefPubMed
  22. 22.↵
    1. Bouzier-Sore AK,
    2. Voisin P,
    3. Canioni P, et al
    . Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 2003;23:1298–306 doi:10.1097/01.WCB.0000091761.61714.25 pmid:14600437
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Moxon-Lester L,
    2. Sinclair K,
    3. Burke C, et al
    . Increased cerebral lactate during hypoxia may be neuroprotective in newborn piglets with intrauterine growth restriction. Brain Res 2007;1179:79–88 doi:10.1016/j.brainres.2007.08.037 pmid:17936737
    CrossRefPubMed
  24. 24.↵
    1. Ogawa M,
    2. Watabe H,
    3. Teramoto N, et al
    . Understanding of cerebral energy metabolism by dynamic living brain slice imaging system with [18F]FDG. Neurosci Res 2005;52:357–61 doi:10.1016/j.neures.2005.04.007 pmid:15904986
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Berthet C,
    2. Lei H,
    3. Thevenet J, et al
    . Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab 2009;29:1780–89 doi:10.1038/jcbfm.2009.97 pmid:19675565
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Royer C,
    2. Lachuer J,
    3. Crouzoulon G, et al
    . Effects of gestational hypoxia on mRNA levels of Glut3 and Glut4 transporters, hypoxia inducible factor-1 and thyroid hormone receptors in developing rat brain. Brain Res 2000;856:119–28 doi:10.1016/S0006-8993(99)02365-3 pmid:10677618
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Hardy OT,
    2. Hernandez-Pampaloni M,
    3. Saffer JR, et al
    . Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr 2007;150:140–45 doi:10.1016/j.jpeds.2006.08.028 pmid:17236890
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Thorngren-Jerneck K,
    2. Ley D,
    3. Hellstrom-Westas L, et al
    . Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs. J Neurosci Res 2001;66:844–50 doi:10.1002/jnr.10051 pmid:11746410
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Vemula S,
    2. Roder KE,
    3. Yang T, et al
    . A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther 2009;328:487–95 doi:10.1124/jpet.108.146589 pmid:18981287
    Abstract/FREE Full Text
  30. 30.↵
    1. Brown AM,
    2. Ransom BR
    . Astrocyte glycogen and brain energy metabolism. Glia 2007;55:1263–71 doi:10.1002/glia.20557 pmid:17659525
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Mehta SL,
    2. Manhas N,
    3. Raghubir R
    . Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007;54:34–66 doi:10.1016/j.brainresrev.2006.11.003 pmid:17222914
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Buckley NM
    . Maturation of circulatory system in three mammalian models of human development. Comp Biochem Physiol A Comp Physiol 1986;83:1–7 pmid:2868826
    PubMed
  33. 33.↵
    1. Kyng KJ,
    2. Skajaa T,
    3. Kerrn-Jespersen S, et al
    . A piglet model of neonatal hypoxic-ischemic encephalopathy. J Vis Exp 2015:e52454 doi:10.3791/52454 pmid:26068784
    CrossRefPubMed
  34. 34.↵
    1. Roohey T,
    2. Raju TN,
    3. Moustogiannis AN
    . Animal models for the study of perinatal hypoxic-ischemic encephalopathy: a critical analysis. Early Hum Dev 1997;47:115–46 doi:10.1016/S0378-3782(96)01773-2 pmid:9039963
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Zhang YF,
    2. Wang XY,
    3. Guo F, et al
    . Simultaneously changes in striatum dopaminergic and glutamatergic parameters following hypoxic-ischemic neuronal injury in newborn piglets. Eur J Paediatr Neurol 2012;16:271–78 doi:10.1016/j.ejpn.2011.05.010 pmid:21723167
    CrossRefPubMed
  36. 36.↵
    1. Zhang YF,
    2. Wang XY,
    3. Cao L, et al
    . Effects of hypoxic-ischemic brain injury on striatal dopamine transporter in newborn piglets: evaluation of 11C-CFT PET/CT for DAT quantification. Nucl Med Biol 2011;38:1205–12 doi:10.1016/j.nucmedbio.2011.05.001 pmid:21741256
    CrossRefPubMed
  37. 37.↵
    1. Thoresen M,
    2. Simmonds M,
    3. Satas S, et al
    . Effective selective head cooling during posthypoxic hypothermia in newborn piglets. Pediatr Res 2001;49:594–99 doi:10.1203/00006450-200104000-00024 pmid:11264446
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Lingwood BE,
    2. Dunster KR,
    3. Healy GN, et al
    . Cerebral impedance and neurological outcome following a mild or severe hypoxic/ischemic episode in neonatal piglets. Brain Res 2003;969:160–67 doi:10.1016/S0006-8993(03)02295-9 pmid:12676376
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Björkman ST,
    2. Foster KA,
    3. O'Driscoll SM, et al
    . Hypoxic/ischemic models in newborn piglet: comparison of constant FiO2 versus variable FiO2 delivery. Brain Res 2006;1100:110–17 doi:10.1016/j.brainres.2006.04.119 pmid:16765329
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (3)
American Journal of Neuroradiology
Vol. 39, Issue 3
1 Mar 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Expression Changes in Lactate and Glucose Metabolism and Associated Transporters in Basal Ganglia following Hypoxic-Ischemic Reperfusion Injury in Piglets
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Y. Zheng, X.-M. Wang
Expression Changes in Lactate and Glucose Metabolism and Associated Transporters in Basal Ganglia following Hypoxic-Ischemic Reperfusion Injury in Piglets
American Journal of Neuroradiology Mar 2018, 39 (3) 569-576; DOI: 10.3174/ajnr.A5505

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Expression Changes in Lactate and Glucose Metabolism and Associated Transporters in Basal Ganglia following Hypoxic-Ischemic Reperfusion Injury in Piglets
Y. Zheng, X.-M. Wang
American Journal of Neuroradiology Mar 2018, 39 (3) 569-576; DOI: 10.3174/ajnr.A5505
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • FRACTURE MR in Congenital Vertebral Anomalies
  • Comparing MRI Perfusion in Pediatric Brain Tumors
  • Sodium MRI in Pediatric Brain Tumors
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire