Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain

Correction of Motion Artifacts Using a Multiscale Fully Convolutional Neural Network

K. Sommer, A. Saalbach, T. Brosch, C. Hall, N.M. Cross and J.B. Andre
American Journal of Neuroradiology March 2020, 41 (3) 416-423; DOI: https://doi.org/10.3174/ajnr.A6436
K. Sommer
aFrom Philips Research, (K.S., A.S., T.B.) Hamburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Sommer
A. Saalbach
aFrom Philips Research, (K.S., A.S., T.B.) Hamburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Saalbach
T. Brosch
aFrom Philips Research, (K.S., A.S., T.B.) Hamburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Brosch
C. Hall
bRadiology Solutions (C.H.), Philips, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Hall
N.M. Cross
cDepartment of Radiology (N.M.C., J.B.A.), University of Washington, Seattle, Washington.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N.M. Cross
J.B. Andre
cDepartment of Radiology (N.M.C., J.B.A.), University of Washington, Seattle, Washington.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.B. Andre
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Andre JB,
    2. Bresnahan BW,
    3. Mossa-Basha M, et al
    . Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J Am Coll Radiology 2015;12:689–95 doi:10.1016/j.jacr.2015.03.007 pmid:25963225
    CrossRefPubMed
  2. 2.↵
    1. Satterthwaite TD,
    2. Wolf DH,
    3. Loughead J, et al
    . Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 2012;60:623–32 doi:10.1016/j.neuroimage.2011.12.063 pmid:22233733
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Schreiber-Zinaman J,
    2. Rosenkrantz AB
    . Frequency and reasons for extra sequences in clinical abdominal MRI examinations. Abdom Radiology (NY) 2017;42:306–11 doi:10.1007/s00261-016-0877-6 pmid:27549101
    CrossRefPubMed
  4. 4.↵
    1. Zaitsev M,
    2. Maclaren J,
    3. Herbst M
    . Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging 2015;42:887–901 doi:10.1002/jmri.24850 pmid:25630632
    CrossRefPubMed
  5. 5.↵
    1. McConnell MV,
    2. Khasgiwala VC,
    3. Savord BJ, et al
    . Prospective adaptive navigator correction for breath‐hold MR coronary angiography. Magn Reson Med 1997;37:148–52 doi:10.1002/mrm.1910370121 pmid:8978644
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Maclaren J,
    2. Herbst M,
    3. Speck O, et al
    . Prospective motion correction in brain imaging: a review. Magn Reson Med 2013;69:621–36 doi:10.1002/mrm.24314 pmid:22570274
    CrossRefPubMed
  7. 7.↵
    1. Atkinson D,
    2. Hill D
    . Reconstruction after rotational motion. Magn Reson Med 2003;49:183–87 doi:10.1002/mrm.10333 pmid:12509836
    CrossRefPubMed
  8. 8.↵
    1. Kochunov P,
    2. Lancaster JL,
    3. Glahn DC, et al
    . Retrospective motion correction protocol for high‐resolution anatomical MRI. Hum Brain Mapp 2006;27:957–62 doi:10.1002/hbm.20235 pmid:16628607
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Pipe JG
    . Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963–69 doi:10.1002/(sici)1522-2594(199911)42:5<963::aid-mrm17>3.0.co;2-l pmid:10542356
    CrossRefPubMed
  10. 10.↵
    1. McGee KP,
    2. Manduca A,
    3. Felmlee JP, et al
    . Image metric-based correction (autocorrection) of motion effects: analysis of image metrics. J Magn Reson Imaging 2000;11:174–81 doi:10.1002/(SICI)1522-2586(200002)11:2<174::AID-JMRI15>3.0.CO;2-3 pmid:10713951
    CrossRefPubMed
  11. 11.↵
    1. Loktyushin A,
    2. Nickisch H,
    3. Pohmann R, et al
    . Blind retrospective motion correction of MR images. Magn Reson Med 2013;70:1608–18 doi:10.1002/mrm.24615 pmid:23401078
    CrossRefPubMed
  12. 12.↵
    1. Krizhevsky A,
    2. Sutskever I,
    3. Hinton GE
    . Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012;1097–1105
  13. 13.↵
    1. Long J,
    2. Shelhamer E,
    3. Darrell T
    . Fully convolutional networks for semantic segmentation. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts. June 7–12, 2015
  14. 14.↵
    1. Zhang K,
    2. Zuo W,
    3. Chen Y, et al
    . Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 2017;26:3142–55 doi:10.1109/TIP.2017.2662206 pmid:28166495
    CrossRefPubMed
  15. 15.↵
    1. Sommer K,
    2. Brosch T,
    3. Wiemker R, et al
    . Correction of motion artifacts using a multi-resolution fully convolutional neural network. In: Proceedings of the Joint Annual Meeting of the International Society for Magnetic Resonance in Medicine and the European Society for Magnetic Resonance in Medicine and Biology, Paris, France. June 16–18, 2018
  16. 16.↵
    1. Duffy BA,
    2. Zhang W,
    3. Tang H, et al
    . Retrospective correction of motion artifact affected structural MRI images using deep learning of simulated motion. In: Proceedings of the 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, the Netherlands. June 4–6, 2018
  17. 17.↵
    1. Kasdi NJ
    . Discrete simulation of colored noise and stochastic processes and 1/f/sup/α power law noise generation. Proceedings of the IEEE 1995;83:802–27 doi:10.1109/5.381848
    CrossRef
  18. 18.↵
    1. Brosch T,
    2. Saalbach A
    . Foveal fully convolutional nets for multi-organ segmentation. In: Medical Imaging 2018: Image Processing: SPIE Proceedings. Bellingham: Society of Photo-Optical Instrumentation Engineers; 2018
  19. 19.↵
    1. Kingma DP,
    2. Ba J
    . Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations, San Diego. May 7–9, 2015
  20. 20.↵
    1. Wang Z,
    2. Bovik AC,
    3. Sheikh HR, et al
    . Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13:600–12 doi:10.1109/tip.2003.819861 pmid:15376593
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Simonyan K,
    2. Zisserman A
    . Very deep convolutional networks for large-scale image recognition. arXiv 2014;1409:1556
  22. 22.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image. In: Proceedings of the IEEE 2016 Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada. June 27–30, 2016
  23. 23.↵
    1. Szegedy C,
    2. Liu W,
    3. Jia Y, et al
    . Going deeper with convolutions. In: Proceedings of the IEEE 2015 Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts. June 7–12, 2015
  24. 24.↵
    1. Huang G,
    2. Liu Z,
    3. Van Der Maaten L, et al
    . Densely connected convolutional networks. In: Proceedings of the IEEE 2017 Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii. June 21–26, 2017
  25. 25.↵
    1. Zhao H,
    2. Gallo O,
    3. Frosio I, et al
    . Loss functions for image restoration with neural networks. IEEE Transactions on Computational Imaging 2017;3:47–57 doi:10.1109/TCI.2016.2644865
    CrossRef
  26. 26.↵
    1. Johnson J,
    2. Alahi A,
    3. Fei-Fei L
    . Perceptual losses for real-time style transfer and super-resolution. In: Proceedings of the European Conference on Computer Vision, Amsterdam, the Netherlands, October 11–14, 2016
  27. 27.↵
    1. Latif S,
    2. Asim M,
    3. Usman M, et al
    . Automating motion correction in multishot MRI using generative adversarial networks. In: Proceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, Canada. December 2–8, 2018
  28. 28.↵
    1. Wang Z,
    2. Bovik AC
    . Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine 2009;26:98–117 doi:10.1109/MSP.2008.930649
    CrossRef
  29. 29.↵
    1. Svoboda P,
    2. Hradis M,
    3. Marsik L, et al
    . CNN for license plate motion deblurring. In: Proceedings of the 2016 IEEE International Conference on Image Processing, Phoenix, Arizona. September 25–28, 2016
  30. 30.↵
    1. Schuler C,
    2. Hirsch M,
    3. Harmeling S, et al
    . Learning to deblur. IEEE Trans Pattern Anal Mach Intell 2016;38:1439–51 doi:10.1109/TPAMI.2015.2481418 pmid:26415157
    CrossRefPubMed
  31. 31.↵
    1. Heiland S
    . From A as in aliasing to Z as in zipper: artifacts in MRI. Clin Neuroradiol 2008;18:25–36 doi:10.1007/s00062-008-8003-y
    CrossRef
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (3)
American Journal of Neuroradiology
Vol. 41, Issue 3
1 Mar 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Correction of Motion Artifacts Using a Multiscale Fully Convolutional Neural Network
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K. Sommer, A. Saalbach, T. Brosch, C. Hall, N.M. Cross, J.B. Andre
Correction of Motion Artifacts Using a Multiscale Fully Convolutional Neural Network
American Journal of Neuroradiology Mar 2020, 41 (3) 416-423; DOI: 10.3174/ajnr.A6436

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Correction of Motion Artifacts Using a Multiscale Fully Convolutional Neural Network
K. Sommer, A. Saalbach, T. Brosch, C. Hall, N.M. Cross, J.B. Andre
American Journal of Neuroradiology Mar 2020, 41 (3) 416-423; DOI: 10.3174/ajnr.A6436
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Mastering Artifact Correction in Neuroimaging Analysis: A Retrospective Approach
  • Brain Tumor IDH, 1p/19q, and MGMT Molecular Classification Using MRI-based Deep Learning: Effect of Motion and Motion Correction
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • ML for Glioma Molecular Subtype Prediction
  • NCCT vs. MRI for Brain Atrophy in Acute Stroke
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire