Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleAdult Brain
Open Access

Deep Learning Enables 60% Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial

S. Bash, L. Wang, C. Airriess, G. Zaharchuk, E. Gong, A. Shankaranarayanan and L.N. Tanenbaum
American Journal of Neuroradiology December 2021, 42 (12) 2130-2137; DOI: https://doi.org/10.3174/ajnr.A7358
S. Bash
aFrom the RadNet Inc (S.B., L.N.T.), Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Bash
L. Wang
bSubtle Medical (L.W., E.G., A.S.), Menlo Park, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Wang
C. Airriess
cCortechs.ai. (C.A.), San Diego, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Airriess
G. Zaharchuk
dStanford University Medical Center (G.Z.), Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zaharchuk
E. Gong
bSubtle Medical (L.W., E.G., A.S.), Menlo Park, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Gong
A. Shankaranarayanan
bSubtle Medical (L.W., E.G., A.S.), Menlo Park, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Shankaranarayanan
L.N. Tanenbaum
aFrom the RadNet Inc (S.B., L.N.T.), Los Angeles, California
eLenox Hill Radiolog (L.N.T.), New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.N. Tanenbaum
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Radlak K,
    2. Malinski L,
    3. Smolka B
    . Deep learning-based switching filter for impulsive noise removal in color images. Sensors 2020;20:2782 doi:10.3390/s20102782
    CrossRef
  2. 2.↵
    1. Tanenbaum LN,
    2. Bash S,
    3. Johnson B, et al
    . Deep learning reconstructed, 40% faster spine MR examinations match or exceed the quality of standard of care exams. In: Proceedings of the Annual Meeting of the Radiological Society of North America; November 29 to December 5, 2020; Virtual
  3. 3.↵
    1. Tanenbaum LN,
    2. Bash S,
    3. Gibbs W, et al
    . CNN based deep learning enhances brain 3D FLAIR perceived quality, SNR and resolution at ∼30% less scan time. In: Proceedings of the Annual Meeting of the American Society of Neuroradiology, May 30 to June 4, 2020; Virtual
  4. 4.↵
    1. Tian C,
    2. Xu Y,
    3. Li Z
    , et al. Attention-guided CNN for image denoising. Neural Netw 2020;124:117–29 doi:10.1016/j.neunet.2019.12.024 pmid:31991307
    CrossRefPubMed
  5. 5.↵
    1. Zhang K,
    2. Zuo W,
    3. Chen Y, et al
    . Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 2017;26:3142–55 doi:10.1109/TIP.2017.2662206 pmid:28166495
    CrossRefPubMed
  6. 6.↵
    1. Lunderwold AS,
    2. Lunderwold A
    . An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 2019;29:102–27 doi:10.1016/j.zemedi.2018.11.002 pmid:30553609
    CrossRefPubMed
  7. 7.↵
    1. Chaudhari A,
    2. Zhongnan F,
    3. Lee J, et al
    . Deep learning super-resolution enables rapid simultaneous morphological and quantitative magnetic resonance imaging. In: Proceeding of Machine Learning for Medical Image Reconstruction Workshop at MICCA, Granada, Spain; September 16, 2018
  8. 8.↵
    1. Antun V,
    2. Renna F,
    3. Poon C, et al
    . On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc Natl Acad Sci U S A 2020;117:30088–95 doi:10.1073/pnas.1907377117 pmid:32393633
    Abstract/FREE Full Text
  9. 9.↵
    1. Bash S
    . Eye on AI: enhancing neuroimaging with artificial intelligence. Appl Radiol 2020;49:20–21
  10. 10.↵
    1. Bryant M
    . Eye on AI: the potential and reality of AI in clinical application. Appl Radiol 2020;49:10–11
  11. 11.↵
    1. Tanenbaum LN,
    2. Bash S,
    3. Davis M
    . Appl Radiol (AR Connect Expert Discussions); AI: clinical applications. In: Proceedings of the Annual Meeting of the Radiological Society of North America, Chicago, Illinois; December 1–6, 2019
  12. 12.↵
    1. Bryant M
    . Bringing AI and genetics together to support clinical decisions. Appl Radiol July 1, 2020. https://appliedradiology.com/communities/Artificial-Intelligence/bringing-ai-and-genetics-together-to-support-clinical-decisions. Accessed July 1, 2020
  13. 13.↵
    1. Melendez JC,
    2. McCrank E
    . Anxiety-related reactions associated with magnetic resonance imaging examinations. JAMA 1993;270:745–47 doi:10.1001/jama.1993.03510060091039 pmid:8336378
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Tanenbaum L
    . Quality, efficiency and survival with patient centric imaging. In: Proceedings of the 7th Snowmass 2019: Hot Topics in Radiology: Advanced Applications and Artificial Intelligence, Snowmass, Colorado; February 10–15, 2019
  15. 15.↵
    1. Zaitsev M,
    2. Maclaren J,
    3. Herbst M
    . Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging 2015;42:887–901 doi:10.1002/jmri.24850 pmid:25630632
    CrossRefPubMed
  16. 16.↵
    1. Andre J,
    2. Bresnahan B,
    3. Mossa-Basha M, et al
    . Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J Am Coll Radiol 2015;12:689–95 doi:10.1016/j.jacr.2015.03.007 pmid:25963225
    CrossRefPubMed
  17. 17.↵
    1. Bash S,
    2. Thomas M,
    3. Fung M
    , et al. K-space based deep learning reconstruction empowers 60-70% acceleration of MR imaging of the spine. In: Proceedings of the Annual Meeting of the Radiological Society of North America, Chicago, Illinois; December 1–6, 2019
  18. 18.↵
    1. Tanenbaum LN,
    2. Bash S,
    3. Thomas M
    , et al. K-space based deep learning reconstruction empowers 50% acceleration of MR spine imaging: a prospective, multicenter, multireader trial. In: Proceedings of the European Congress of Radiology, February 26 to March 1, 2020; Virtual
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (12)
American Journal of Neuroradiology
Vol. 42, Issue 12
1 Dec 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Learning Enables 60% Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
S. Bash, L. Wang, C. Airriess, G. Zaharchuk, E. Gong, A. Shankaranarayanan, L.N. Tanenbaum
Deep Learning Enables 60% Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial
American Journal of Neuroradiology Dec 2021, 42 (12) 2130-2137; DOI: 10.3174/ajnr.A7358

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Learning Enables 60% Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial
S. Bash, L. Wang, C. Airriess, G. Zaharchuk, E. Gong, A. Shankaranarayanan, L.N. Tanenbaum
American Journal of Neuroradiology Dec 2021, 42 (12) 2130-2137; DOI: 10.3174/ajnr.A7358
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Alzheimer Disease Anti-Amyloid Immunotherapies: Imaging Recommendations and Practice Considerations for Monitoring of Amyloid-Related Imaging Abnormalities
  • The Future of Artificial Intelligence in Clinical Radiology: Savior or False Hope?
  • Real-World Adoption of Artificial Intelligence in Radiology: Opportunities and Barriers
  • Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time
  • Deep Learning-Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial
  • Accelerated Synthetic MRI with Deep Learning-Based Reconstruction for Pediatric Neuroimaging
  • Validation of a Denoising Method Using Deep Learning-Based Reconstruction to Quantify Multiple Sclerosis Lesion Load on Fast FLAIR Imaging
  • Crossref (51)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Clinical Assessment of Deep Learning–based Super-Resolution for 3D Volumetric Brain MRI
    Jeffrey D. Rudie, Tyler Gleason, Matthew J. Barkovich, David M. Wilson, Ajit Shankaranarayanan, Tao Zhang, Long Wang, Enhao Gong, Greg Zaharchuk, Javier E. Villanueva-Meyer
    Radiology: Artificial Intelligence 2022 4 2
  • Clinical applications of artificial intelligence in radiology
    Claudia Mello-Thoms, Carlos A B Mello
    The British Journal of Radiology 2023 96 1150
  • Cortical Grey matter volume depletion links to neurological sequelae in post COVID-19 “long haulers”
    Ted L. Rothstein
    BMC Neurology 2023 23 1
  • Applications of Artificial Intelligence in the Radiology Roundtrip: Process Streamlining, Workflow Optimization, and Beyond
    Kevin Pierre, Adam G. Haneberg, Sean Kwak, Keith R. Peters, Bruno Hochhegger, Thiparom Sananmuang, Padcha Tunlayadechanont, Patrick J. Tighe, Anthony Mancuso, Reza Forghani
    Seminars in Roentgenology 2023 58 2
  • Pediatric magnetic resonance imaging: faster is better
    Sebastian Gallo-Bernal, M. Alejandra Bedoya, Michael S. Gee, Camilo Jaimes
    Pediatric Radiology 2022 53 7
  • Alzheimer Disease Anti-Amyloid Immunotherapies: Imaging Recommendations and Practice Considerations for Monitoring of Amyloid-Related Imaging Abnormalities
    Petrice M. Cogswell, Trevor J. Andrews, Jerome A. Barakos, Frederik Barkhof, Suzie Bash, Marc Daniel Benayoun, Gloria C. Chiang, Ana M. Franceschi, Clifford R. Jack, Jay J. Pillai, Tina Young Poussaint, Cyrus A. Raji, Vijay K. Ramanan, Jody Tanabe, Lawrence Tanenbaum, Christopher T. Whitlow, Fang F. Yu, Greg Zaharchuk, Michael Zeinah, Tammie S. Benzinger
    American Journal of Neuroradiology 2025 46 1
  • Predicting Hypoperfusion Lesion and Target Mismatch in Stroke from Diffusion-weighted MRI Using Deep Learning
    Yannan Yu, Soren Christensen, Jiahong Ouyang, Fabien Scalzo, David S. Liebeskind, Maarten G. Lansberg, Gregory W. Albers, Greg Zaharchuk
    Radiology 2023 307 1
  • Rapid lumbar MRI protocol using 3D imaging and deep learning reconstruction
    J. Levi Chazen, Ek Tsoon Tan, Jake Fiore, Joseph T. Nguyen, Simon Sun, Darryl B. Sneag
    Skeletal Radiology 2023 52 7
  • Ultrafast Brain MRI Protocol at 1.5 T Using Deep Learning and Multi-shot EPI
    Sebastian Altmann, Mario Alberto Abello Mercado, Lavinia Brockstedt, Andrea Kronfeld, Bryan Clifford, Thorsten Feiweier, Timo Uphaus, Sergiu Groppa, Marc A. Brockmann, Ahmed E. Othman
    Academic Radiology 2023 30 12
  • Deep Learning–Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial
    L.N. Tanenbaum, S.C. Bash, G. Zaharchuk, A. Shankaranarayanan, R. Chamberlain, M. Wintermark, C. Beaulieu, M. Novick, L. Wang
    American Journal of Neuroradiology 2023 44 8

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • ML for Glioma Molecular Subtype Prediction
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Choroid Plexus Calcification&Microglial Activation
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire