Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain

Prediction of Clinical Outcome in Patients with Large-Vessel Acute Ischemic Stroke: Performance of Machine Learning versus SPAN-100

B. Jiang, G. Zhu, Y. Xie, J.J. Heit, H. Chen, Y. Li, V. Ding, A. Eskandari, P. Michel, G. Zaharchuk and M. Wintermark
American Journal of Neuroradiology February 2021, 42 (2) 240-246; DOI: https://doi.org/10.3174/ajnr.A6918
B. Jiang
aFrom the Department of Radiology, Neuroradiology Section (B.J., G.Z., Y.X., J.J.H., H.C., Y.L., G.Z., M.W.), Stanford University School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Jiang
G. Zhu
aFrom the Department of Radiology, Neuroradiology Section (B.J., G.Z., Y.X., J.J.H., H.C., Y.L., G.Z., M.W.), Stanford University School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zhu
Y. Xie
aFrom the Department of Radiology, Neuroradiology Section (B.J., G.Z., Y.X., J.J.H., H.C., Y.L., G.Z., M.W.), Stanford University School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Xie
J.J. Heit
aFrom the Department of Radiology, Neuroradiology Section (B.J., G.Z., Y.X., J.J.H., H.C., Y.L., G.Z., M.W.), Stanford University School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.J. Heit
H. Chen
aFrom the Department of Radiology, Neuroradiology Section (B.J., G.Z., Y.X., J.J.H., H.C., Y.L., G.Z., M.W.), Stanford University School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Chen
Y. Li
aFrom the Department of Radiology, Neuroradiology Section (B.J., G.Z., Y.X., J.J.H., H.C., Y.L., G.Z., M.W.), Stanford University School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Li
V. Ding
bDepartment of Medicine (V.D.), Quantitative Sciences Unit, Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Ding
A. Eskandari
cNeurology Service (A.E., P.M.), Centre Hospitalier Universitaire Vaudois and Lausanne University, Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Eskandari
P. Michel
cNeurology Service (A.E., P.M.), Centre Hospitalier Universitaire Vaudois and Lausanne University, Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Michel
G. Zaharchuk
aFrom the Department of Radiology, Neuroradiology Section (B.J., G.Z., Y.X., J.J.H., H.C., Y.L., G.Z., M.W.), Stanford University School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zaharchuk
M. Wintermark
aFrom the Department of Radiology, Neuroradiology Section (B.J., G.Z., Y.X., J.J.H., H.C., Y.L., G.Z., M.W.), Stanford University School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wintermark
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Benjamin EJ,
    2. Muntner P,
    3. Alonso A, et al
    ; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 2019;139:e56–528 doi:10.1161/CIR.0000000000000659 pmid:30700139
    CrossRefPubMed
  2. 2.↵
    1. Albers GW,
    2. Marks MP,
    3. Kemp S, et al
    ; DEFUSE 3 Investigators. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018;378:708–18 doi:10.1056/NEJMoa1713973 pmid:29364767
    CrossRefPubMed
  3. 3.↵
    1. Nogueira RG,
    2. Jadhav AP,
    3. Haussen DC, et al
    ; DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018;378:11–21 doi:10.1056/NEJMoa1706442 pmid:29129157
    CrossRefPubMed
  4. 4.↵
    1. Winzeck S,
    2. Hakim A,
    3. McKinley R, et al
    . ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front Neurol 2018;9:679 doi:10.3389/fneur.2018.00679 pmid:30271370
    CrossRefPubMed
  5. 5.↵
    1. Turc G,
    2. Apoil M,
    3. Naggara O, et al
    . Magnetic resonance imaging-dragon score: 3-month outcome prediction after intravenous thrombolysis for anterior circulation stroke. Stroke 2013;44:1323–28 doi:10.1161/STROKEAHA.111.000127 pmid:23482603
    Abstract/FREE Full Text
  6. 6.↵
    1. Strbian D,
    2. Seiffge DJ,
    3. Breuer L, et al
    . Validation of the dragon score in 12 stroke centers in anterior and posterior circulation. Stroke 2013;44:2718–21 doi:10.1161/STROKEAHA.113.002033 pmid:23929752
    Abstract/FREE Full Text
  7. 7.↵
    1. Cooray C,
    2. Mazya M,
    3. Bottai M, et al
    . External validation of the astral and dragon scores for prediction of functional outcome in stroke. Stroke 2016;47:1493–99 doi:10.1161/STROKEAHA.116.012802 pmid:27174528
    Abstract/FREE Full Text
  8. 8.↵
    1. Möbius C,
    2. Blinzler C,
    3. Schwab S, et al
    . Re-evaluation of the Stroke Prognostication Using Age and NIH Stroke Scale index (SPAN-100 index) in IVT patients: the-SPAN 100(65) index. BMC Neurol 2018;18:129 doi:10.1186/s12883-018-1126-0 pmid:30157792
    CrossRefPubMed
  9. 9.↵
    1. Saposnik G,
    2. Guzik AK,
    3. Reeves M, et al
    . Stroke prognostication using age and NIH Stroke Scale: SPAN-100. Neurology 2013;80:21–28 doi:10.1212/WNL.0b013e31827b1ace pmid:23175723
    Abstract/FREE Full Text
  10. 10.↵
    1. Rangaraju S,
    2. Aghaebrahim A,
    3. Streib C, et al
    . Pittsburgh Response to Endovascular Therapy (PRE) score: optimizing patient selection for endovascular therapy for large vessel occlusion strokes. J NeuroIntervent Surg 2015;7:783–88 doi:10.1136/neurintsurg-2014-011351 pmid:25320054
    Abstract/FREE Full Text
  11. 11.↵
    1. Flint AC,
    2. Faigeles BS,
    3. Cullen SP, et al
    ; VISTA Collaboration. Thrive score predicts ischemic stroke outcomes and thrombolytic hemorrhage risk in VISTA. Stroke 2013;44:3365–69 doi:10.1161/STROKEAHA.113.002794 pmid:24072004
    Abstract/FREE Full Text
  12. 12.↵
    1. Sarraj A,
    2. Albright K,
    3. Barreto AD, et al
    . Optimizing prediction scores for poor outcome after intra-arterial therapy in anterior circulation acute ischemic stroke. Stroke 2013;44:3324–30 doi:10.1161/STROKEAHA.113.001050 pmid:23929748
    Abstract/FREE Full Text
  13. 13.↵
    1. Jiang B,
    2. Ball RL,
    3. Michel P, et al
    . Factors influencing infarct growth including collateral status assessed using computed tomography in acute patients with stroke with large artery occlusion. Int J Stroke 2019;14:603–12 doi:10.1177/1747493019851278 pmid:31096871
    CrossRefPubMed
  14. 14.↵
    1. Hakimelahi R,
    2. Vachha BA,
    3. Copen WA, et al
    . Time and diffusion lesion size in major anterior circulation ischemic strokes. Stroke 2014;45:2936–41 doi:10.1161/STROKEAHA.114.005644 pmid:25190444
    Abstract/FREE Full Text
  15. 15.↵
    1. Bentley P,
    2. Ganesalingam J,
    3. Carlton Jones AL, et al
    . Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin 2014;4:635–40 doi:10.1016/j.nicl.2014.02.003 pmid:24936414
    CrossRefPubMed
  16. 16.↵
    1. Asadi H,
    2. Dowling R,
    3. Yan B, et al
    . Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS One 2014;9:e88225 doi:10.1371/journal.pone.0088225 pmid:24520356
    CrossRefPubMed
  17. 17.↵
    1. Nishi H,
    2. Oishi N,
    3. Ishii A, et al
    . Predicting clinical outcomes of large vessel occlusion before mechanical thrombectomy using machine learning. Stroke 2019;50:2379–88 doi:10.1161/STROKEAHA.119.025411 pmid:31409267
    CrossRefPubMed
  18. 18.↵
    1. Garg R,
    2. Oh E,
    3. Naidech A, et al
    . Automating ischemic stroke subtype classification using machine learning and natural language processing. J Stroke Cerebrovasc Dis 2019;28:2045–51 doi:10.1016/j.jstrokecerebrovasdis.2019.02.004 pmid:31103549
    CrossRefPubMed
  19. 19.↵
    1. Yu Y,
    2. Guo D,
    3. Lou M, et al
    . Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI. IEEE Trans Biomed Eng 2018;65:2058–65 doi:10.1109/TBME.2017.2783241 pmid:29989941
    CrossRefPubMed
  20. 20.↵
    1. Chung JW,
    2. Kim YC,
    3. Cha J, et al
    . Characterization of clot composition in acute cerebral infarct using machine learning techniques. Ann Clin Transl Neurol 2019;6:739–47 doi:10.1002/acn3.751 pmid:31019998
    CrossRefPubMed
  21. 21.↵
    1. Adams HP Jr.,
    2. Bendixen BH,
    3. Kappelle LJ, et al
    . Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial—TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993;24:35–41 doi:10.1161/01.str.24.1.35 pmid:7678184
    Abstract/FREE Full Text
  22. 22.↵
    1. Wintermark M,
    2. Flanders AE,
    3. Velthuis B, et al
    . Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006;37:979–85 doi:10.1161/01.STR.0000209238.61459.39 pmid:16514093
    Abstract/FREE Full Text
  23. 23.↵
    TIMI Study Group. The Thrombolysis in Myocardial Infarction (TIMI) trial: Phase I findings. N Engl J Med 1985;312:932–36 doi:10.1056/NEJM198504043121437 pmid:4038784
    CrossRefPubMed
  24. 24.↵
    1. Tan JC,
    2. Dillon WP,
    3. Liu S, et al
    . Systematic comparison of perfusion-CT and CT-angiography in acute patients with stroke. Ann Neurol 2007;61:533–43 doi:10.1002/ana.21130 pmid:17431875
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Puetz V,
    2. Dzialowski I,
    3. Hill MD, et al
    ; Calgary CTA Study Group. Intracranial thrombus extent predicts clinical outcome, final infarct size and hemorrhagic transformation in ischemic stroke: the clot burden score. Int J Stroke 2008;3:230–36 doi:10.1111/j.1747-4949.2008.00221.x pmid:18811738
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Freund Y
    . An adaptive version of the boost by majority algorithm. Machine Learning 2001;43:293–18. file:///C:/Users/mrudi/Downloads/Freund2001_Article_AnAdaptiveVersionOfTheBoostByM.pdf. Accessed January 18, 2019
  27. 27.↵
    1. Chen T,
    2. Guestrin C
    . Xgboost: a scalable tree boosting system. In: KDD ‘16: Proceedings of the 22nd Association for Computing Machinery Special Interest Group for Knowledge Discovery from Data International Conference on Knowledge Discovery and Data Mining. San Francisco, California; August 2016:785–94
  28. 28.↵
    1. Xie Y,
    2. Jiang B,
    3. Gong E, et al
    . Journal club: use of Gradient Boosting Machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. AJR Am J Roentgenol 2019;212:44–51 doi:10.2214/AJR.18.20260 pmid:30354266
    CrossRefPubMed
  29. 29.↵
    1. Livne M,
    2. Boldsen JK,
    3. Mikkelsen IK, et al
    . Boosted tree model reforms multimodal magnetic resonance imaging infarct prediction in acute stroke. Stroke 2018;49:912–18 doi:10.1161/STROKEAHA.117.019440 pmid:29540608
    Abstract/FREE Full Text
  30. 30.↵
    1. DeLong ER,
    2. DeLong DM,
    3. Clarke-Pearson DL
    . Comparing the areas under two or more correlated receiver operation characteristic curves: a nonparametric approach. Biometrics 1988;44:837 doi:10.2307/2531595 pmid:3203132
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Xavier Robin NT,
    2. Hainard A,
    3. Tiberti N, et al
    . Proc: An open-source package for R and S+ to analyze and compare roc curves. BMC Bioinformatics 2011;12:77 doi:10.1186/1471-2105-12-77
    CrossRefPubMed
  32. 32.↵
    The R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 1999–2012
  33. 33.↵
    1. Bacchi S,
    2. Zerner T,
    3. Oakden-Rayner L, et al
    . Deep learning in the prediction of ischaemic stroke thrombolysis functional outcomes: a pilot study. Acad Radiology 2019;27:e19–23 doi:10.1016/j.acra.2019.03.015 pmid:31053480
    CrossRefPubMed
  34. 34.↵
    1. Heo J,
    2. Yoon JG,
    3. Park H, et al
    . Machine learning-based model for prediction of outcomes in acute stroke. Stroke 2019;50:1263–65 doi:10.1161/STROKEAHA.118.024293 pmid:30890116
    CrossRefPubMed
  35. 35.↵
    1. Torlay L,
    2. Perrone-Bertolotti M,
    3. Thomas E, et al
    . Machine learning-XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform 2017;4:159–69 doi:10.1007/s40708-017-0065-7 pmid:28434153
    CrossRefPubMed
  36. 36.↵
    1. Adams HP Jr.,
    2. Davis PH,
    3. Leira EC, et al
    . Baseline NIH stroke scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology 1999;53:126–31 doi:10.1212/WNL.53.1.126
    Abstract/FREE Full Text
  37. 37.↵
    1. Hankey GJ,
    2. Spiesser J,
    3. Hakimi Z, et al
    . Rate, degree, and predictors of recovery from disability following ischemic stroke. Neurology 2007;68:1583–87 doi:10.1212/01.wnl.0000260967.77422.97 pmid:17485645
    Abstract/FREE Full Text
  38. 38.↵
    1. Weir CJ,
    2. Murray GD,
    3. Dyker AG, et al
    . Is hyperglycaemia an independent predictor of poor outcome after acute stroke? Results of a long-term follow-up study. BMJ 1997;314:1303–06 doi:10.1136/bmj.314.7090.1303 pmid:9158464
    Abstract/FREE Full Text
  39. 39.↵
    1. Parsons MW,
    2. Barber PA,
    3. Desmond PM, et al
    . Acute hyperglycemia adversely affects stroke outcome: a magnetic resonance imaging and spectroscopy study. Ann Neurol 2002;52:20–28 doi:10.1002/ana.10241 pmid:12112043
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Tan IY,
    2. Demchuk AM,
    3. Hopyan J, et al
    . CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol 2009;30:525–31 doi:10.3174/ajnr.A1408 pmid:19147716
    Abstract/FREE Full Text
  41. 41.↵
    1. Quinn TJ,
    2. Singh S,
    3. Lees KR, et al
    ; VISTA Collaborators. Validating and comparing stroke prognosis scales. Neurology 2017;89:997–1002 doi:10.1212/WNL.0000000000004332 pmid:28794250
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (2)
American Journal of Neuroradiology
Vol. 42, Issue 2
1 Feb 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Prediction of Clinical Outcome in Patients with Large-Vessel Acute Ischemic Stroke: Performance of Machine Learning versus SPAN-100
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
B. Jiang, G. Zhu, Y. Xie, J.J. Heit, H. Chen, Y. Li, V. Ding, A. Eskandari, P. Michel, G. Zaharchuk, M. Wintermark
Prediction of Clinical Outcome in Patients with Large-Vessel Acute Ischemic Stroke: Performance of Machine Learning versus SPAN-100
American Journal of Neuroradiology Feb 2021, 42 (2) 240-246; DOI: 10.3174/ajnr.A6918

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Prediction of Clinical Outcome in Patients with Large-Vessel Acute Ischemic Stroke: Performance of Machine Learning versus SPAN-100
B. Jiang, G. Zhu, Y. Xie, J.J. Heit, H. Chen, Y. Li, V. Ding, A. Eskandari, P. Michel, G. Zaharchuk, M. Wintermark
American Journal of Neuroradiology Feb 2021, 42 (2) 240-246; DOI: 10.3174/ajnr.A6918
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Development and validation of machine learning-based model for mortality prediction in patients with acute basilar artery occlusion receiving endovascular treatment: multicentric cohort analysis
  • Excellence is a habit: Enhancing predictions of language impairment by identifying stable features in clinical perfusion scans
  • Preprocedural determination of an occlusion pathomechanism in endovascular treatment of acute stroke: a machine learning-based decision
  • End to end stroke triage using cerebrovascular morphology and machine learning
  • Machine learning and acute stroke imaging
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire