Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleHead and Neck Imaging
Open Access

Effects of COVID-19 on the Human Central Olfactory System: A Natural Pre-Post Experiment

E. Thunell, M.G. Peter, V. Lenoir, P. Andersson, B.N. Landis, M. Becker and J.N. Lundström
American Journal of Neuroradiology December 2022, 43 (12) 1777-1783; DOI: https://doi.org/10.3174/ajnr.A7713
E. Thunell
aFrom the Department of Clinical Neuroscience (E.T., M.G.P., J.N.L.), Karolinska Institutet, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Thunell
M.G. Peter
aFrom the Department of Clinical Neuroscience (E.T., M.G.P., J.N.L.), Karolinska Institutet, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.G. Peter
V. Lenoir
bDiagnostic Department (V.L., M.B.), Division of Radiology
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Lenoir
P. Andersson
dStockholm University Brain Imaging Center (P.A., J.N.L.), Stockholm University, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Andersson
B.N. Landis
cDepartment of Otorhinolaryngology (B.N.L.), Rhinology-Olfactology Unit, Geneva University Hospital, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.N. Landis
M. Becker
bDiagnostic Department (V.L., M.B.), Division of Radiology
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Becker
J.N. Lundström
aFrom the Department of Clinical Neuroscience (E.T., M.G.P., J.N.L.), Karolinska Institutet, Stockholm, Sweden
dStockholm University Brain Imaging Center (P.A., J.N.L.), Stockholm University, Stockholm, Sweden
eMonell Chemical Senses Center (J.N.L.), Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.N. Lundström
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Gerkin RC,
    2. Ohla K,
    3. Veldhuizen MG, et al
    . Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms. Chem Senses 2021;46:bjaa081 doi:10.1093/chemse/bjaa081 pmid:33367502
    CrossRefPubMed
  2. 2.↵
    1. Hannum ME,
    2. Ramirez VA,
    3. Lipson SJ, et al
    . Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19-positive patients compared to subjective methods: a systematic review and meta-analysis. Chem Senses 2020;45:865–74 pmid:33245136
    CrossRefPubMed
  3. 3.↵
    1. Iravani B,
    2. Arshamian A,
    3. Ravia A, et al
    . Relationship between odor intensity estimates and COVID-19 prevalence prediction in a Swedish population. Chem Senses 2020 May 22. [Epub ahead of print] doi:10.1093/chemse/bjaa034 pmid:33033249
    CrossRefPubMed
  4. 4.↵
    1. Menni C,
    2. Valdes AM,
    3. Freidin MB, et al
    . Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med 2020;26:1037–40 doi:10.1038/s41591-020-0916-2 pmid:32393804
    CrossRefPubMed
  5. 5.↵
    1. Rudberg A-S,
    2. Havervall S,
    3. Månberg A, et al
    . SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nat Commun 2020;11:5064 doi:10.1038/s41467-020-18848-0 pmid:33033249
    CrossRefPubMed
  6. 6.↵
    1. Durrant DM,
    2. Ghosh S,
    3. Klein RS
    . The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci 2016;7:464–69 doi:10.1021/acschemneuro.6b00043 pmid:27058872
    CrossRefPubMed
  7. 7.↵
    1. de Melo GD,
    2. Lazarini F,
    3. Levallois S, et al
    . COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med 2021;13:13596 doi:10.1126/scitranslmed.abf8396 pmid:33941622
    CrossRefPubMed
  8. 8.↵
    1. Mukerji SS,
    2. Solomon IH
    . What can we learn from brain autopsies in COVID-19? Neurosci Lett 2021;742:135528 doi:10.1016/j.neulet.2020.135528 pmid:33248159
    CrossRefPubMed
  9. 9.↵
    1. Meinhardt J,
    2. Radke J,
    3. Dittmayer C, et al
    . Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 2021;24:168–75 doi:10.1038/s41593-020-00758-5 pmid:33257876
    CrossRefPubMed
  10. 10.↵
    1. Aragão MFVV,
    2. Leal MC,
    3. Cartaxo Filho OQ, et al
    . Anosmia in COVID-19 associated with injury to the olfactory bulbs evident on MRI. AJNR Am J Neuroradiol 2020;41:1703–06 doi:10.3174/ajnr.A6675 pmid:32586960
    Abstract/FREE Full Text
  11. 11.↵
    1. Galougahi MK,
    2. Ghorbani J,
    3. Bakhshayeshkaram M, et al
    . Olfactory bulb magnetic resonance imaging in SARS-CoV-2-induced anosmia: the first report. Acad Radiol 2020;27:892–93 doi:10.1016/j.acra.2020.04.002 pmid:32295727
    CrossRefPubMed
  12. 12.↵
    1. Kandemirli SG,
    2. Altundag A,
    3. Yildirim D, et al
    . Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia. Acad Radiol 2021;28:28–35 doi:10.1016/j.acra.2020.10.006 pmid:33132007
    CrossRefPubMed
  13. 13.↵
    1. Laurendon T,
    2. Radulesco T,
    3. Mugnier J, et al
    . Bilateral transient olfactory bulb edema during COVID-19-related anosmia. Neurology 2020;95:224–25 doi:10.1212/WNL.0000000000009850 pmid:32444492
    Abstract/FREE Full Text
  14. 14.↵
    1. Strauss SB,
    2. Lantos JE,
    3. Heier LA, et al
    . Olfactory bulb signal abnormality in patients with COVID-19 who present with neurologic symptoms. AJNR Am J Neuroradiol 2020;41:1882–87 doi:10.3174/ajnr.A6751 pmid:32855190
    Abstract/FREE Full Text
  15. 15.↵
    1. Altundag A,
    2. Yıldırım D,
    3. Tekcan Sanli DE, et al
    . Olfactory cleft measurements and COVID-19-related anosmia. Otolaryngol Head Neck Surg 2021;164:1337–44 doi:10.1177/0194599820965920 pmid:33045908
    CrossRefPubMed
  16. 16.↵
    1. Khan M,
    2. Yoo SJ,
    3. Clijsters M, et al
    . Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell 2021;184:5932–5949.e15 doi:10.1016/j.cell.2021.10.027 pmid:34798069
    CrossRefPubMed
  17. 17.↵
    1. Thunell E,
    2. Peter MG,
    3. Lenoir V, et al
    . Effects of COVID-19 on the human central olfactory system: a natural pre-post experiment. medRxiv 2021 https://www.medrxiv.org/content/10.1101/2021.12.27.21268455v1 Accessed September 1, 2022
  18. 18.↵
    1. Peter MG,
    2. Mårtensson G,
    3. Postma EM, et al
    . Morphological changes in secondary, but not primary, sensory cortex in individuals with life-long olfactory sensory deprivation. Neuroimage 2020;218:117005 doi:10.1016/j.neuroimage.2020.117005 pmid:32485304
    CrossRefPubMed
  19. 19.↵
    1. Gaser C,
    2. Dahnke R,
    3. Kurth K,
    4. Luders E; Alzheimer’s Disease Neuroimaging Initiative
    . A computational anatomy toolbox for the analysis of structural MRI data. bioRxiv 2020 https://www.biorxiv.org/content/10.1101/2022.06.11.495736v1
  20. 20.↵
    1. Ashburner J,
    2. Friston KJ
    . Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. Neuroimage 2011;55:954–67 doi:10.1016/j.neuroimage.2010.12.049 pmid:21216294
    CrossRefPubMed
  21. 21.↵
    1. Peter MG,
    2. Fransson P,
    3. Mårtensson G, et al
    . Normal olfactory functional connectivity despite lifelong absence of olfactory experiences. Cereb Cortex 2021;31:159–68 doi:10.1093/cercor/bhaa217 pmid:32810869
    CrossRefPubMed
  22. 22.↵
    1. Seubert J,
    2. Freiherr J,
    3. Djordjevic J, et al
    . Statistical localization of human olfactory cortex. Neuroimage 2013;66:333–42 doi:10.1016/j.neuroimage.2012.10.030 pmid:23103688
    CrossRefPubMed
  23. 23.↵
    1. Porada DK,
    2. Regenbogen C,
    3. Seubert J, et al
    . Multisensory enhancement of odor object processing in primary olfactory cortex. Neuroscience 2019;418:254–65 doi:10.1016/j.neuroscience.2019.08.040 pmid:31473279
    CrossRefPubMed
  24. 24.↵
    1. Negoias S,
    2. Pietsch K,
    3. Hummel T
    . Changes in olfactory bulb volume following lateralized olfactory training. Brain Imaging Behav 2017;11:998–1005 doi:10.1007/s11682-016-9567-9 pmid:27448159
    CrossRefPubMed
  25. 25.↵
    1. Bergmann O,
    2. Liebl J,
    3. Bernard S, et al
    . The age of olfactory bulb neurons in humans. Neuron 2012;74:634–39 doi:10.1016/j.neuron.2012.03.030 pmid:22632721
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Wenzel J,
    2. Lampe J,
    3. Müller-Fielitz H, et al
    . The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci 2021;24:1522–33 doi:10.1038/s41593-021-00926-1 pmid:34675436
    CrossRefPubMed
  27. 27.↵
    1. Korol DL,
    2. Brunjes PC
    . Unilateral naris closure and vascular development in the rat olfactory bulb. Neuroscience 1992;463:631–41 doi:10.1016/0306-4522(92)90150-z pmid:1372114
    CrossRefPubMed
  28. 28.↵
    1. Douaud G,
    2. Lee S,
    3. Alfaro-Almagro F, et al
    . SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022;604:697–707 doi:10.1038/s41586-022-04569-5 pmid:35255491
    CrossRefPubMed
  29. 29.↵
    1. Esposito F,
    2. Cirillo M,
    3. De Micco R, et al
    . Olfactory loss and brain connectivity after COVID-19. Hum Brain Mapp 2022;43:1548–60 doi:10.1002/hbm.25741 pmid:35083823
    CrossRefPubMed
  30. 30.↵
    1. Xydakis MS,
    2. Albers MW,
    3. Holbrook EH, et al
    . Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurol 2021;20:753–61 doi:10.1016/S1474-4422(21)00182-4 pmid:34339626
    CrossRefPubMed
  31. 31.↵
    1. von Bartheld CS,
    2. Hagen MM,
    3. Butowt R
    . Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. ACS Chem Neurosci 2020;11:2944–61 doi:10.1021/acschemneuro.0c00460 pmid:32870641
    CrossRefPubMed
  32. 32.↵
    1. Yang AC,
    2. Kern F,
    3. Losada PM, et al
    . Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021;595:565–71 doi:10.1038/s41586-021-03710-0 pmid:34153974
    CrossRefPubMed
  33. 33.↵
    1. Wheeler DL,
    2. Athmer J,
    3. Meyerholz DK, et al
    . Murine olfactory bulb interneurons survive infection with a neurotropic coronavirus. J Virol 2017;91:e01099-17 doi:10.1128/JVI.01099-17 pmid:28835503
    Abstract/FREE Full Text
  34. 34.↵
    1. Kalinke U,
    2. Bechmann I,
    3. Detje CN
    . Host strategies against virus entry via the olfactory system. Virulence 2011;24:367–70 doi:10.4161/viru.2.4.16138 pmid:21758005
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 43 (12)
American Journal of Neuroradiology
Vol. 43, Issue 12
1 Dec 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Effects of COVID-19 on the Human Central Olfactory System: A Natural Pre-Post Experiment
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
E. Thunell, M.G. Peter, V. Lenoir, P. Andersson, B.N. Landis, M. Becker, J.N. Lundström
Effects of COVID-19 on the Human Central Olfactory System: A Natural Pre-Post Experiment
American Journal of Neuroradiology Dec 2022, 43 (12) 1777-1783; DOI: 10.3174/ajnr.A7713

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Effects of COVID-19 on Olfactory System
E. Thunell, M.G. Peter, V. Lenoir, P. Andersson, B.N. Landis, M. Becker, J.N. Lundström
American Journal of Neuroradiology Dec 2022, 43 (12) 1777-1783; DOI: 10.3174/ajnr.A7713
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Hydrops Herniation into the Semicircular Canals
  • ASL Sensitivity for Head and Neck Paraganglioma
  • Post SRS Peritumoral Hyperintense Signal of VSs
Show more HEAD AND NECK IMAGING

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire