Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticleNeuroimaging Physics/Functional Neuroimaging/CT and MRI Technology

Functional Connectivity Changes on Resting-State fMRI after Mild Traumatic Brain Injury: A Systematic Review

Siddhant Dogra, Soroush Arabshahi, Jason Wei, Lucia Saidenberg, Stella K. Kang, Sohae Chung, Andrew Laine and Yvonne W. Lui
American Journal of Neuroradiology June 2024, 45 (6) 795-801; DOI: https://doi.org/10.3174/ajnr.A8204
Siddhant Dogra
aFrom the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Siddhant Dogra
Soroush Arabshahi
bDepartment of Biomedical Engineering (S.A., A.L.), Department of Radiology, Columbia University, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Soroush Arabshahi
Jason Wei
aFrom the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jason Wei
Lucia Saidenberg
cDepartment of Neurology (L.S.), Department of Radiology. New York University Grossman School of Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lucia Saidenberg
Stella K. Kang
aFrom the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sohae Chung
aFrom the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sohae Chung
Andrew Laine
bDepartment of Biomedical Engineering (S.A., A.L.), Department of Radiology, Columbia University, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yvonne W. Lui
aFrom the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yvonne W. Lui
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. McDonald BC,
    2. Saykin AJ,
    3. McAllister TW
    . Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav 2012;6:193–207 doi:10.1007/s11682-012-9173-4 pmid:22618832
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Stevens MC,
    2. Lovejoy D,
    3. Kim J, et al
    . Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav 2012;6:293–318 doi:10.1007/s11682-012-9157-4 pmid:22555821
    CrossRefPubMed
  3. 3.↵
    1. Biswal B,
    2. Yetkin FZ,
    3. Haughton VM, et al
    . Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537–41 doi:10.1002/mrm.1910340409 pmid:8524021
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Mayer AR,
    2. Mannell MV,
    3. Ling J, et al
    . Functional connectivity in mild traumatic brain injury. Hum Brain Mapp 2011;32:1825–35 doi:10.1002/hbm.21151 pmid:21259381
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Seewoo BJ,
    2. Joos AC,
    3. Feindel KW
    . An analytical workflow for seed-based correlation and independent component analysis in interventional resting-state fMRI studies. Neurosci Res 2021;165:26–37 doi:10.1016/j.neures.2020.05.006 pmid:32464181
    CrossRefPubMed
  6. 6.↵
    1. Kelly RE,
    2. Wang Z,
    3. Alexopoulos GS, et al
    . Hybrid ICA-seed-based methods for fMRI functional connectivity assessment: a feasibility study. Int J Biomed Imaging 2010;2010:868976 doi:10.1155/2010/868976 pmid:20689712
    CrossRefPubMed
  7. 7.↵
    1. Farahani FV,
    2. Karwowski W,
    3. Lighthall NR
    . Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front Neurosci 2019;13:585 doi:10.3389/fnins.2019.00585 pmid:31249501
    CrossRefPubMed
  8. 8.↵
    1. Vedaei F,
    2. Newberg AB,
    3. Alizadeh M, et al
    . Resting-state functional MRI metrics in patients with chronic mild traumatic brain injury and their association with clinical cognitive performance. Front Hum Neurosci 2021;15:768485 doi:10.3389/fnhum.2021.768485 pmid:35027887
    CrossRefPubMed
  9. 9.↵
    1. Zou QH,
    2. Zhu CZ,
    3. Yang Y, et al
    . An improved approach to detection of Amplitude of Low-Frequency Fluctuations (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 2008;172:137–41 doi:10.1016/j.jneumeth.2008.04.012 pmid:18501969
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Wells GA,
    2. Shea B,
    3. O’Connell D, et al
    . The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottowa Hospital Research Institute, 2021. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed October 29, 2023
  11. 11.↵
    1. Bittencourt M,
    2. van der Horn HJ,
    3. Balart-Sanchez SA, et al
    . Effects of mild traumatic brain injury on resting state brain network connectivity in older adults. Brain Imaging Behav 2022;16:1863–72 doi:10.1007/s11682-022-00662-5 pmid:35394617
    CrossRefPubMed
  12. 12.
    1. Kim E,
    2. Seo HG,
    3. Seong MY, et al
    . An exploratory study on functional connectivity after mild traumatic brain injury: preserved global but altered local organization. Brain Behav 2022;12:e2735 doi:10.1002/brb3.2735 pmid:35993893
    CrossRefPubMed
  13. 13.
    1. Li F,
    2. Liu Y,
    3. Lu L, et al
    . Rich-club reorganization of functional brain networks in acute mild traumatic brain injury with cognitive impairment. Quant Imaging Med Surg 2022;12:3932–46 doi:10.21037/qims-21-915 pmid:35782237
    CrossRefPubMed
  14. 14.
    1. Li W,
    2. Ding S,
    3. Zhao G
    . Static and dynamic topological organization of brain functional connectome in acute mild traumatic brain injury. Acta Radiol 2022;64:1175–83 doi:10.1177/02841851221109897 pmid:35765198
    CrossRefPubMed
  15. 15.
    1. Lu L,
    2. Zhang J,
    3. Li F, et al
    . Aberrant static and dynamic functional network connectivity in acute mild traumatic brain injury with cognitive impairment. Clin Neuroradiol 2022;32:205–14 doi:10.1007/s00062-021-01082-6 pmid:34463779
    CrossRefPubMed
  16. 16.
    1. Amir J,
    2. Nair JK,
    3. Del Carpio-O’Donovan R, et al
    . Atypical resting state functional connectivity in mild traumatic brain injury. Brain Behav 2021;11:e2261 doi:10.1002/brb3.2261 pmid:34152089
    CrossRefPubMed
  17. 17.
    1. Bajaj S,
    2. Raikes AC,
    3. Razi A, et al
    . Blue-light therapy strengthens resting-state effective connectivity within default-mode network after mild TBI. J Cent Nerv Syst Dis 2021;13:11795735211015076 doi:10.1177/11795735211015076 pmid:34104033
    CrossRefPubMed
  18. 18.
    1. Bittencourt-Villalpando M,
    2. van der Horn HJ,
    3. Maurits NM, et al
    . Disentangling the effects of age and mild traumatic brain injury on brain network connectivity: a resting state fMRI study. Neuroimage Clin 2021;29:102534 doi:10.1016/j.nicl.2020.102534 pmid:33360020
    CrossRefPubMed
  19. 19.
    1. Jia X,
    2. Chang X,
    3. Bai L, et al
    . A longitudinal study of white matter functional network in mild traumatic brain injury. J Neurotrauma 2021;38:2686–97 doi:10.1089/neu.2021.0017 pmid:33906419
    CrossRefPubMed
  20. 20.
    1. Shi J,
    2. Teng J,
    3. Du X, et al
    . Multi-modal analysis of resting-state fMRI data in mTBI patients and association with neuropsychological outcomes. Front Neurol 2021;12:639760 doi:10.3389/fneur.2021.639760 pmid:34079510
    CrossRefPubMed
  21. 21.
    1. Sun Y,
    2. Wang S,
    3. Gan S, et al
    . Serum neuron-specific enolase levels associated with connectivity alterations in anterior default mode network after mild traumatic brain injury. J Neurotrauma 2021;38:1495–505 doi:10.1089/neu.2020.7372 pmid:33687275
    CrossRefPubMed
  22. 22.
    1. Wang T,
    2. Hu Y,
    3. Wang D, et al
    . Arcuate fasciculus subsegment impairments distinctly associated with memory and language deficits in acute mild traumatic brain injury patients. J Neurotrauma 2021;38:3279–87 doi:10.1089/neu.2021.0267 pmid:34605664
    CrossRefPubMed
  23. 23.
    1. Wang Z,
    2. Zhang M,
    3. Sun C, et al
    . Single mild traumatic brain injury deteriorates progressive interhemispheric functional and structural connectivity. J Neurotrauma 2021;38:464–73 doi:10.1089/neu.2018.6196 pmid:30931824
    CrossRefPubMed
  24. 24.
    1. Zhang D,
    2. Zhu P,
    3. Yin B, et al
    . Frontal white matter hyperintensities effect on default mode network connectivity in acute mild traumatic brain injury. Front Aging Neurosci 2021;13:793491 doi:10.3389/fnagi.2021.793491 pmid:35250532
    CrossRefPubMed
  25. 25.
    1. D’Souza MM,
    2. Kumar M,
    3. Choudhary A, et al
    . Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: a longitudinal resting-state functional magnetic resonance imaging study. Neuroradiol J 2020;33:186–97 doi:10.1177/1971400920901706 pmid:31992126
    CrossRefPubMed
  26. 26.
    1. Li F,
    2. Lu L,
    3. Chen H, et al
    . Neuroanatomical and functional alterations of insula in mild traumatic brain injury patients at the acute stage. Brain Imaging Behav 2020;14:907–16 doi:10.1007/s11682-019-00053-3 pmid:30734204
    CrossRefPubMed
  27. 27.
    1. Li F,
    2. Lu L,
    3. Shang S, et al
    . Disrupted functional network connectivity predicts cognitive impairment after acute mild traumatic brain injury. CNS Neurosci Ther 2020;26:1083–91 doi:10.1111/cns.13430 pmid:32588522
    CrossRefPubMed
  28. 28.
    1. Liu Y,
    2. Wu W,
    3. Chen X, et al
    . Aberrant correlation between the default mode and salience networks in mild traumatic brain injury. Front Comput Neurosci 2020;14:68 doi:10.3389/fncom.2020.00068 pmid:32848686
    CrossRefPubMed
  29. 29.
    1. Lu L,
    2. Li F,
    3. Chen H, et al
    . Functional connectivity dysfunction of insular subdivisions in cognitive impairment after acute mild traumatic brain injury. Brain Imaging Behav 2020;14:941–48 doi:10.1007/s11682-020-00288-5 pmid:32304021
    CrossRefPubMed
  30. 30.
    1. Lu L,
    2. Li F,
    3. Wang P, et al
    . Altered hypothalamic functional connectivity in post-traumatic headache after mild traumatic brain injury. J Headache Pain 2020;21:93 doi:10.1186/s10194-020-01164-9 pmid:32723299
    CrossRefPubMed
  31. 31.
    1. Shafi R,
    2. Crawley AP,
    3. Tartaglia MC, et al
    . Sex-specific differences in resting-state functional connectivity of large-scale networks in postconcussion syndrome. Sci Rep 2020;10:21982 doi:10.1038/s41598-020-77137-4 pmid:33319807
    CrossRefPubMed
  32. 32.
    1. Chong CD,
    2. Wang L,
    3. Wang K, et al
    . Homotopic region connectivity during concussion recovery: a longitudinal fMRI study. PLoS One 2019;14:e0221892 doi:10.1371/journal.pone.0221892 pmid:31577811
    CrossRefPubMed
  33. 33.
    1. Hou W,
    2. Sours Rhodes C,
    3. Jiang L, et al
    . Dynamic functional network analysis in mild traumatic brain injury. Brain Connect 2019;9:475–87 doi:10.1089/brain.2018.0629 pmid:30982332
    CrossRefPubMed
  34. 34.
    1. Kuceyeski AF,
    2. Jamison KW,
    3. Owen JP, et al
    . Longitudinal increases in structural connectome segregation and functional connectome integration are associated with better recovery after mild TBI. Hum Brain Mapp 2019;40:4441–56 doi:10.1002/hbm.24713 pmid:31294921
    CrossRefPubMed
  35. 35.
    1. Li F,
    2. Lu L,
    3. Chen H, et al
    . Disrupted brain functional hub and causal connectivity in acute mild traumatic brain injury. Aging (Albany NY) 2019;11:10684–96 doi:10.18632/aging.102484 pmid:31754082
    CrossRefPubMed
  36. 36.
    1. Lu L,
    2. Li F,
    3. Ma Y, et al
    . Functional connectivity disruption of the substantia nigra associated with cognitive impairment in acute mild traumatic brain injury. Eur J Radiol 2019;114:69–75 doi:10.1016/j.ejrad.2019.03.002 pmid:31005180
    CrossRefPubMed
  37. 37.
    1. Niu X,
    2. Bai L,
    3. Sun Y, et al
    . Disruption of periaqueductal grey-default mode network functional connectivity predicts persistent post-traumatic headache in mild traumatic brain injury. J Neurol Neurosurg Psychiatry 2019;90:326–32 doi:10.1136/jnnp-2018-318886 pmid:30554137
    Abstract/FREE Full Text
  38. 38.
    1. Dailey NS,
    2. Smith R,
    3. Vanuk JR, et al
    . Resting-state functional connectivity as a biomarker of aggression in mild traumatic brain injury. Neuroreport 2018;29:1413–17 doi:10.1097/WNR.0000000000001127 pmid:30204638
    CrossRefPubMed
  39. 39.
    1. Wang S,
    2. Hu L,
    3. Cao J, et al
    . Sex differences in abnormal intrinsic functional connectivity after acute mild traumatic brain injury. Front Neural Circuits 2018;12:107 doi:10.3389/fncir.2018.00107 pmid:30555304
    CrossRefPubMed
  40. 40.
    1. Xu H,
    2. Wang X,
    3. Chen Z, et al
    . Longitudinal changes of caudate-based resting state functional connectivity in mild traumatic brain injury. Front Neurol 2018;9:467 doi:10.3389/fneur.2018.00467 pmid:29973909
    CrossRefPubMed
  41. 41.
    1. Dall'Acqua P,
    2. Johannes S,
    3. Mica L, et al
    . Functional and structural network recovery after mild traumatic brain injury: a 1-year longitudinal study. Front Hum Neurosci 2017;11:280 doi:10.3389/fnhum.2017.00280 pmid:28611614
    CrossRefPubMed
  42. 42.
    1. Palacios EM,
    2. Yuh EL,
    3. Chang YS, et al
    . Resting-state functional connectivity alterations associated with six-month outcomes in mild traumatic brain injury. J Neurotrauma 2017;34:1546–57 doi:10.1089/neu.2016.4752 pmid:28085565
    CrossRefPubMed
  43. 43.
    1. Rajesh A,
    2. Cooke GE,
    3. Monti JM, et al
    . Differences in brain architecture in remote mild traumatic brain injury. J Neurotrauma 2017;34:3280–87 doi:10.1089/neu.2017.5047 pmid:28726543
    CrossRefPubMed
  44. 44.
    1. van der Horn HJ,
    2. Liemburg EJ,
    3. Scheenen ME, et al
    . Graph analysis of functional brain networks in patients with mild traumatic brain injury. PLoS One 2017;12:e0171031 doi:10.1371/journal.pone.0171031 pmid:28129397
    CrossRefPubMed
  45. 45.
    1. van der Horn HJ,
    2. Scheenen ME,
    3. de Koning ME, et al
    . The default mode network as a biomarker of persistent complaints after mild traumatic brain injury: a longitudinal functional magnetic resonance imaging study. J Neurotrauma 2017;34:3262–69 doi:10.1089/neu.2017.5185 pmid:28882089
    CrossRefPubMed
  46. 46.
    1. Vergara VM,
    2. Mayer AR,
    3. Kiehl KA, et al
    . Dynamic functional network connectivity discriminates mild traumatic brain injury through machine learning. Neuroimage Clin 2018;19:30–37 doi:10.1016/j.nicl.2018.03.017 pmid:30034999
    CrossRefPubMed
  47. 47.
    1. Vergara VM,
    2. Mayer AR,
    3. Damaraju E, et al
    . Detection of mild traumatic brain injury by machine learning classification using resting state functional network connectivity and fractional anisotropy. J Neurotrauma 2017;34:1045–53 doi:10.1089/neu.2016.4526 pmid:27676221
    CrossRefPubMed
  48. 48.
    1. Yan H,
    2. Sun C,
    3. Wang X, et al
    . Deteriorating neural connectivity of the hippocampal episodic memory network in mTBI patients: acohort study. In: Proceedings of the International Joint Conference on Neural Networks, May 14–19; 2017:2979–86. Anchorage, Alaska
  49. 49.
    1. Yan Y,
    2. Song J,
    3. Xu G, et al
    . Correlation between standardized assessment of concussion scores and small-world brain network in mild traumatic brain injury. J Clin Neurosci 2017;44:114–21 doi:10.1016/j.jocn.2017.05.010 pmid:28602630
    CrossRefPubMed
  50. 50.
    1. Zhou Y
    . Abnormal structural and functional hypothalamic connectivity in mild traumatic brain injury. J Magn Reson Imaging 2017;45:1105–12 doi:10.1002/jmri.25413 pmid:27467114
    CrossRefPubMed
  51. 51.
    1. Astafiev SV,
    2. Zinn KL,
    3. Shulman GL, et al
    . Exploring the physiological correlates of chronic mild traumatic brain injury symptoms. Neuroimage Clin 2016;11:10–19 doi:10.1016/j.nicl.2016.01.004 pmid:26909324
    CrossRefPubMed
  52. 52.
    1. Banks SD,
    2. Coronado RA,
    3. Clemons LR, et al
    . Thalamic functional connectivity in mild traumatic brain injury: longitudinal associations with patient-reported outcomes and neuropsychological tests. Arch Phys Med Rehabil 2016;97:1254–61 doi:10.1016/j.apmr.2016.03.013 pmid:27085849
    CrossRefPubMed
  53. 53.
    1. Iraji A,
    2. Chen H,
    3. Wiseman N, et al
    . Compensation through functional hyperconnectivity: A longitudinal connectome assessment of mild traumatic brain injury. Neural Plast 2016;2016:4072402 doi:10.1155/2016/4072402 pmid:26819765
    CrossRefPubMed
  54. 54.
    1. Nordin LE,
    2. Moller MC,
    3. Julin P, et al
    . Post mTBI fatigue is associated with abnormal brain functional connectivity. Sci Rep 2016;6:21183 doi:10.1038/srep21183 pmid:26878885
    CrossRefPubMed
  55. 55.
    1. van der Horn HJ,
    2. Liemburg EJ,
    3. Scheenen ME, et al
    . Brain network dysregulation, emotion, and complaints after mild traumatic brain injury. Hum Brain Mapp 2016;37:1645–54 doi:10.1002/hbm.23126 pmid:26846195
    CrossRefPubMed
  56. 56.
    1. Xiong KL,
    2. Zhang JN,
    3. Zhang YL, et al
    . Brain functional connectivity and cognition in mild traumatic brain injury. Neuroradiology 2016;58:733–39 doi:10.1007/s00234-016-1675-0 pmid:27000797
    CrossRefPubMed
  57. 57.
    1. Yan H,
    2. Feng Y,
    3. Wang Q
    . Altered effective connectivity of hippocampus-dependent episodic memory network in mTBI survivors. Neural Plast 2016;2016:6353845 doi:10.1155/2016/6353845 pmid:28074162
    CrossRefPubMed
  58. 58.
    1. Bharath RD,
    2. Munivenkatappa A,
    3. Gohel S, et al
    . Recovery of resting brain connectivity ensuing mild traumatic brain injury. Front Hum Neurosci 2015;9:513 doi:10.3389/fnhum.2015.00513 pmid:26441610
    CrossRefPubMed
  59. 59.
    1. Iraji A,
    2. Benson RR,
    3. Welch RD, et al
    . Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses. J Neurotrauma 2015;32:1031–45 doi:10.1089/neu.2014.3610 pmid:25285363
    CrossRefPubMed
  60. 60.
    1. Mayer AR,
    2. Ling JM,
    3. Allen EA, et al
    . Static and dynamic intrinsic connectivity following mild traumatic brain injury. J Neurotrauma 2015;32:1046–55 doi:10.1089/neu.2014.3542 pmid:25318005
    CrossRefPubMed
  61. 61.
    1. Sours C,
    2. Chen H,
    3. Roys S, et al
    . Investigation of multiple frequency ranges using discrete wavelet decomposition of resting-state functional connectivity in mild traumatic brain injury patients. Brain Connect 2015;5:442–50 doi:10.1089/brain.2014.0333 pmid:25808612
    CrossRefPubMed
  62. 62.
    1. Sours C,
    2. George E,
    3. Zhuo JC, et al
    . Hyper-connectivity of the thalamus during early stages following mild traumatic brain injury. Brain Imaging Behav 2015;9:550–63 doi:10.1007/s11682-015-9424-2 pmid:26153468
    CrossRefPubMed
  63. 63.
    1. Sours C,
    2. Rosenberg J,
    3. Kane R, et al
    . Associations between interhemispheric functional connectivity and the Automated Neuropsychological Assessment Metrics (ANAM) in civilian mild TBI. Brain Imaging Behav 2015;9:190–203 doi:10.1007/s11682-014-9295-y pmid:24557591
    CrossRefPubMed
  64. 64.
    1. Sours C,
    2. Zhuo J,
    3. Roys S, et al
    . Disruptions in resting state functional connectivity and cerebral blood flow in mild traumatic brain injury patients. PLoS One 2015;10:e0134019 doi:10.1371/journal.pone.0134019 pmid:26241476
    CrossRefPubMed
  65. 65.
    1. Vergara VM,
    2. Damaraju E,
    3. Mayer AB, et al
    . The impact of data preprocessing in traumatic brain injury detection using functional magnetic resonance imaging. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 25–29, 2015:5432–35 Milan, Italy
  66. 66.
    1. Zhan J,
    2. Gao L,
    3. Zhou F, et al
    . Decreased regional homogeneity in patients with acute mild traumatic brain injury: a resting-state fMRI study. J Nerv Ment Dis 2015;203:786–91 doi:10.1097/NMD.0000000000000368 pmid:26348589
    CrossRefPubMed
  67. 67.
    1. Zhou Y,
    2. Lui YW,
    3. Zuo XN, et al
    . Characterization of thalamo-cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury. J Magn Reson Imaging 2014;39:1558–68 doi:10.1002/jmri.24310 pmid:24014176
    CrossRefPubMed
  68. 68.
    1. Messe A,
    2. Caplain S,
    3. Pelegrini-Issac M, et al
    . Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS One 2013;8:e65470 doi:10.1371/journal.pone.0065470 pmid:23755237
    CrossRefPubMed
  69. 69.
    1. Sours C,
    2. Zhuo J,
    3. Janowich J, et al
    . Default mode network interference in mild traumatic brain injury: a pilot resting state study. Brain Res 2013;1537:201–15 doi:10.1016/j.brainres.2013.08.034 pmid:23994210
    CrossRefPubMed
  70. 70.↵
    1. Shumskaya E,
    2. Andriessen T,
    3. Norris DG, et al
    . Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology 2012;79:175–82 doi:10.1212/WNL.0b013e31825f04fb pmid:22744656
    Abstract/FREE Full Text
  71. 71.
    1. Zhou Y,
    2. Milham MP,
    3. Lui YW, et al
    . Default-mode network disruption in mild traumatic brain injury. Radiology 2012;265:882–92 doi:10.1148/radiol.12120748 pmid:23175546
    CrossRefPubMed
  72. 72.↵
    1. Tang L,
    2. Ge Y,
    3. Sodickson DK, et al
    . Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology 2011;260:831–40 doi:10.1148/radiol.11110014 pmid:21775670
    CrossRefPubMed
  73. 73.↵
    1. Wang S,
    2. Gan S,
    3. Yang X, et al
    . Decoupling of structural and functional connectivity in hubs and cognitive impairment after mild traumatic brain injury. Brain Connect 2021;11:745–58 doi:10.1089/brain.2020.0852 pmid:33605188
    CrossRefPubMed
  74. 74.↵
    1. Sullivan DR
    . A cerebrovascular hypothesis of neurodegeneration in mTBI. J Head Trauma Rehabil 2019;34:E18–27 doi:10.1097/HTR.0000000000000449 pmid:30499930
    CrossRefPubMed
  75. 75.↵
    1. Baker TL,
    2. Agoston DV,
    3. Brady RD, et al
    . Targeting the cerebrovascular system: next-generation biomarkers and treatment for mild traumatic brain injury. Neuroscientist 2021;28:594–612 doi:10.1177/10738584211012264 pmid:33966527
    CrossRefPubMed
  76. 76.↵
    1. Chong JS,
    2. Liu S,
    3. Loke YM, et al
    . Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer’s disease. Brain 2017;140:3012–22 doi:10.1093/brain/awx224 pmid:29053778
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (6)
American Journal of Neuroradiology
Vol. 45, Issue 6
1 Jun 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Functional Connectivity Changes on Resting-State fMRI after Mild Traumatic Brain Injury: A Systematic Review
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Siddhant Dogra, Soroush Arabshahi, Jason Wei, Lucia Saidenberg, Stella K. Kang, Sohae Chung, Andrew Laine, Yvonne W. Lui
Functional Connectivity Changes on Resting-State fMRI after Mild Traumatic Brain Injury: A Systematic Review
American Journal of Neuroradiology Jun 2024, 45 (6) 795-801; DOI: 10.3174/ajnr.A8204

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
fMRI Connectivity Changes After Mild Brain Injury
Siddhant Dogra, Soroush Arabshahi, Jason Wei, Lucia Saidenberg, Stella K. Kang, Sohae Chung, Andrew Laine, Yvonne W. Lui
American Journal of Neuroradiology Jun 2024, 45 (6) 795-801; DOI: 10.3174/ajnr.A8204
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (4)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Could MR elastography be a way to make violent contact sports safer?
    Tzu-Chao Chuang, Yu-Hsiu Lee, Hsiao-Wen Chung
    European Radiology 2025 35 6
  • Repeated Exposures to Air Travel-Relevant Hypobaria Induce Anxiety-Like Behavior and Alter Functional Connectivity and White Matter Integrity in a Ferret Model of Traumatic Brain Injury
    Li Jiang, Molly J. Goodfellow, Su Xu, Amanda Hrdlick, Boris Piskoun, Julie L. Proctor, Xiao Liang, Steven Roys, Xin Li, Rao P. Gullapalli, Ulrich H. Leiste, William Fourney, Jody C. Cantu, Catriona H.T. Miller, Jiachen Zhuo, Gary Fiskum
    Journal of Neurotrauma 2025
  • Repetitive subconcussion results in disrupted neural activity independent of concussion history
    Kevin Grant Solar, Matthew Ventresca, Rouzbeh Zamyadi, Jing Zhang, Rakesh Jetly, Oshin Vartanian, Shawn G Rhind, Benjamin T Dunkley
    Brain Communications 2024 6 5
  • Silent Trauma: Neuroimaging Highlights Subtle Changes from Military Blast Exposure
    Siddhant Dogra, Yvonne W. Lui
    Radiology 2025 315 1

More in this TOC Section

  • Brain Imaging Quality Evaluation of Low-Dose Butterfly CBCT
  • Optimizing fMRI Protocols with Anesthesia
  • WEB Device for Aneurysm Imaging with UTE-MRI
Show more Neuroimaging Physics/Functional Neuroimaging/CT and MRI Technology

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire