Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

  • Getting new auth cookie, if you see this message a lot, tell someone!
  • Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleUltra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

DSC MR Perfusion at 7T MRI: An Initial Single-Center Study for Validity and Practicability

Clare E. Buntrock, Ceren Dinçer, Onur Tuncer, Matthew White, Alexis Swensen, Mark Folkertsma and Can Özütemiz
American Journal of Neuroradiology March 2025, 46 (3) 627-634; DOI: https://doi.org/10.3174/ajnr.A8513
Clare E. Buntrock
aFrom the University of Minnesota Medical School (C.E.B.), Minneapolis, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Clare E. Buntrock
Ceren Dinçer
bDepartment of Radiology (C.D.), Hacettepe University, Faculty of Medicine, Ankara, Turkiye
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ceren Dinçer
Onur Tuncer
cDepartment of Radiology (O.T.), Yeditepe University, Faculty of Medicine, Istanbul, Turkiye
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Onur Tuncer
Matthew White
dCenter for Clinical Imaging Research (M.W.), University of Minnesota, Minneapolis, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexis Swensen
eDepartment of Radiology (A.S., M.F., C.Ö.), University of Minnesota Medical School, Minneapolis, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Folkertsma
eDepartment of Radiology (A.S., M.F., C.Ö.), University of Minnesota Medical School, Minneapolis, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Can Özütemiz
eDepartment of Radiology (A.S., M.F., C.Ö.), University of Minnesota Medical School, Minneapolis, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Can Özütemiz
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Graphical Abstract

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

BACKGROUND AND PURPOSE: DSC perfusion is an advanced imaging technique routinely used at 1.5T and 3T MRI. However, its utility is not well known in 7T MRI systems. We aim to evaluate if DSC perfusion is a valid and practicable tool at 7T MRI.

MATERIALS AND METHODS: A successful DSC perfusion was performed in 9 patients with an FDA-approved 7T MRI system (Siemens Terra with 1tx/32rx Nova head coil) in 2023. Half-dose contrast was administered by hand, followed by saline flush. Acquisition was initiated 45 seconds before contrast injection. Voxel size was 1.5 × 1.5 × 1.6 mm3. Perfusion maps were generated by using either SyngoVia or DynaSuite software. Parameters including relative CBV (rCBV), relative CBF (rCBF), relative MTT (rMTT), and relative TTP (rTTP) were measured in 5 anatomic locations bilaterally (precentral gyrus, middle frontal gyrus, corona radiata, thalamus, occipital cortex) and enhancing lesions if present. Normalized ratios of rCBV (nrCBV), rCBF (nrCBF), rMTT (nrMTT), and rTTP (nrTTP) were calculated and compared on boxplots. Two neuroradiologists reviewed each scan visually by using a 5-point Likert scale regarding imaging quality and artifacts. Qualitative and quantitative assessments were made on DSC perfusion in cases with enhanced target lesions.

RESULTS: Uploading the source images to imaging software took approximately 30 minutes to a few hours. In a few circumstances, large data caused software crashes. Map generation took approximately 10–15 minutes. Susceptibility artifacts varied from mild to moderate in cerebellum, temporal lobes, brainstem, and basal ganglia and none to minimal in the frontal, occipital, and parietal gyri. Map quality was excellent to reasonably good for all cases. The nrCBV, nrCBF, nrMTT, and nrTTP resulted in similar measurements for each anatomic area. Six target lesions were assessed in 2 different patients with well to excellent visualization on fused maps. Three lesions were characterized as tumor progression (1 biopsy-confirmed, 2 unconfirmed), 1 lesion as indeterminant (regressed in follow-up), and 2 lesions as radiation necrosis (1 stable, 1 regressed on follow-up).

CONCLUSIONS: Despite limitations with postprocessing issues, it is possible to reliably measure nrCBV, nrCBF, nrMTT, and nrTTP values with DSC perfusion by using a clinical 7T MRI system, and qualitatively, excellent or reasonably good fusion maps can be generated with high resolution.

ABBREVIATIONS:

ASFNR
American Society of Functional Neuroradiology
GBCA
gadolinium-based contrast agent
GRE
gradient echo
NAWM
normal-appearing white matter
nrCBF
normalized ratio of relative CBF
nrCBV
normalized ratio of relative CBV
nrMTT
normalized ratio of relative MTT
nrTTP
normalized ratio of relative TTP
rCBF
relative CBF
rCBV
relative CBV
rMTT
relative MTT
rTTP
relative TTP
  • © 2025 by American Journal of Neuroradiology
View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (3)
American Journal of Neuroradiology
Vol. 46, Issue 3
1 Mar 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
DSC MR Perfusion at 7T MRI: An Initial Single-Center Study for Validity and Practicability
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Clare E. Buntrock, Ceren Dinçer, Onur Tuncer, Matthew White, Alexis Swensen, Mark Folkertsma, Can Özütemiz
DSC MR Perfusion at 7T MRI: An Initial Single-Center Study for Validity and Practicability
American Journal of Neuroradiology Mar 2025, 46 (3) 627-634; DOI: 10.3174/ajnr.A8513

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Dynamic MR Perfusion at 7T: Initial Study Insights
Clare E. Buntrock, Ceren Dinçer, Onur Tuncer, Matthew White, Alexis Swensen, Mark Folkertsma, Can Özütemiz
American Journal of Neuroradiology Mar 2025, 46 (3) 627-634; DOI: 10.3174/ajnr.A8513
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Trigeminal nerve root assessment using MPF mapping
  • Tissue Damage Characterization in MS Using DWI
  • Automated vs Manual Central Vein Sign in MS
Show more Ultra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire