Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleHead and Neck Imaging
Open Access

Convolutional Neural Network to Stratify the Malignancy Risk of Thyroid Nodules: Diagnostic Performance Compared with the American College of Radiology Thyroid Imaging Reporting and Data System Implemented by Experienced Radiologists

G.R. Kim, E. Lee, H.R. Kim, J.H. Yoon, V.Y. Park and J.Y. Kwak
American Journal of Neuroradiology May 2021, DOI: https://doi.org/10.3174/ajnr.A7149
G.R. Kim
aFrom the Department of Radiology (G.R.K., J.H.Y., V.Y.P., J.Y.K.), Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.R. Kim
E. Lee
bDepartment of Computational Science and Engineering (E.L.), Yonsei University, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Lee
H.R. Kim
cBiostatistics Collaboration Unit (H.R.K.), Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H.R. Kim
J.H. Yoon
aFrom the Department of Radiology (G.R.K., J.H.Y., V.Y.P., J.Y.K.), Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.H. Yoon
V.Y. Park
aFrom the Department of Radiology (G.R.K., J.H.Y., V.Y.P., J.Y.K.), Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V.Y. Park
J.Y. Kwak
aFrom the Department of Radiology (G.R.K., J.H.Y., V.Y.P., J.Y.K.), Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.Y. Kwak
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Haugen BR,
    2. Alexander EK,
    3. Bible KC, et al
    . 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1–133 doi:10.1089/thy.2015.0020 pmid:26462967
    CrossRefPubMed
  2. 2.↵
    1. Kwak JY,
    2. Han KH,
    3. Yoon JH, et al
    . Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011;260:892–99 doi:10.1148/radiol.11110206 pmid:21771959
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Choi SH,
    2. Kim EK,
    3. Kwak JY, et al
    . Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules. Thyroid 2010;20:167–72 doi:10.1089/thy.2008.0354 pmid:19725777
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Park SH,
    2. Kim SJ,
    3. Kim EK, et al
    . Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. AJR Am J Roentgenol 2009;193:W416–23 doi:10.2214/AJR.09.2541 pmid:19843721
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Chang Y,
    2. Paul AK,
    3. Kim N, et al
    . Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: a comparison with radiologist-based assessments. Med Phys 2016;43:554 doi:10.1118/1.4939060 pmid:26745948
    CrossRefPubMed
  6. 6.↵
    1. Choi YJ,
    2. Baek JH,
    3. Park HS, et al
    . A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment. Thyroid 2017;27:546–52 doi:10.1089/thy.2016.0372 pmid:28071987
    CrossRefPubMed
  7. 7.↵
    1. Acharya UR,
    2. Swapna G,
    3. Sree SV, et al
    . A review on ultrasound-based thyroid cancer tissue characterization and automated classification. Technol Cancer Res Treat 2014;13:289–301 doi:10.7785/tcrt.2012.500381 pmid:24206204
    CrossRefPubMed
  8. 8.↵
    1. Gopinath B,
    2. Shanthi N
    . Computer-aided diagnosis system for classifying benign and malignant thyroid nodules in multi-stained FNAB cytological images. Australas Phys Eng Sci Med 2013;36:219–30 doi:10.1007/s13246-013-0199-8 pmid:23690210
    CrossRefPubMed
  9. 9.↵
    1. Shin HC,
    2. Roth HR,
    3. Gao M, et al
    . Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:1285–98 doi:10.1109/TMI.2016.2528162 pmid:26886976
    CrossRefPubMed
  10. 10.↵
    1. Ko SY,
    2. Lee JH,
    3. Yoon JH, et al
    . Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound. Head Neck 2019;41:885–91 doi:10.1002/hed.25415 pmid:30715773
    CrossRefPubMed
  11. 11.↵
    1. Li X,
    2. Zhang S,
    3. Zhang Q, et al
    . Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol 2019;20:193–201 doi:10.1016/S1470-2045(18)30762-9 pmid:30583848
    CrossRefPubMed
  12. 12.↵
    1. Kim HL,
    2. Ha EJ,
    3. Han M
    . Real-world performance of computer-aided diagnosis system for thyroid nodules using ultrasonography. Ultrasound Med Biol 2019;45:2672–78 doi:10.1016/j.ultrasmedbio.2019.05.032 pmid:31262524
    CrossRefPubMed
  13. 13.↵
    1. Ma J,
    2. Wu F,
    3. Zhu J, et al
    . A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 2017;73:221–30 doi:10.1016/j.ultras.2016.09.011 pmid:27668999
    CrossRefPubMed
  14. 14.↵
    1. Ma J,
    2. Wu F,
    3. Jiang T, et al
    . Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Med Phys 2017;44:1678–91 doi:10.1002/mp.12134 pmid:28186630
    CrossRefPubMed
  15. 15.↵
    1. Buda M,
    2. Wildman-Tobriner B,
    3. Hoang JK, et al
    . Management of thyroid nodules seen on US images: deep learning may match performance of radiologists. Radiology 2019;292:695–701 doi:10.1148/radiol.2019181343 pmid:31287391
    CrossRefPubMed
  16. 16.↵
    1. Koh J,
    2. Lee E,
    3. Han K, et al
    . Diagnosis of thyroid nodules on ultrasonography by a deep convolutional neural network. Sci Rep 2020;10:15245 doi:10.1038/s41598-020-72270-6 pmid:30583848
    CrossRefPubMed
  17. 17.↵
    1. Jin Z,
    2. Zhu Y,
    3. Zhang S, et al
    . Ultrasound computer-aided diagnosis (CAD) based on the thyroid imaging reporting and data system (TI-RADS) to distinguish benign from malignant thyroid nodules and the diagnostic performance of radiologists with different diagnostic experience. Med Sci Monit 2020;26:e918452 doi:10.12659/MSM.918452 pmid:31929498
    CrossRefPubMed
  18. 18.↵
    1. Park S,
    2. Oh CM,
    3. Cho H, et al
    . Association between screening and the thyroid cancer “epidemic” in South Korea: evidence from a nationwide study. BMJ 2016;355:i5745 doi:10.1136/bmj.i5745 pmid:27903497
    Abstract/FREE Full Text
  19. 19.↵
    1. Jegerlehner S,
    2. Bulliard JL,
    3. Aujesky D, et al
    . NICER Working Group. Overdiagnosis and overtreatment of thyroid cancer: a population-based temporal trend study. PLoS One 2017;12:e0179387 doi:10.1371/journal.pone.0179387 pmid:28614405
    CrossRefPubMed
  20. 20.↵
    1. Wu XL,
    2. Du JR,
    3. Wang H, et al
    . Comparison and preliminary discussion of the reasons for the differences in diagnostic performance and unnecessary FNA biopsies between the ACR TIRADS and 2015 ATA guidelines. Endocrine 2019;65:121–31 doi:10.1007/s12020-019-01886-0 pmid:30830584
    CrossRefPubMed
  21. 21.↵
    1. Yoon JH,
    2. Lee HS,
    3. Kim EK, et al
    . Pattern-based vs. score-based guidelines using ultrasound features have different strengths in risk stratification of thyroid nodules. Eur Radiol 2020;30:3793–3802 doi:10.1007/s00330-020-06722-y pmid:32088739
    CrossRefPubMed
  22. 22.↵
    1. Tappouni RR,
    2. Itri JN,
    3. McQueen TS, et al
    . ACR TI-RADS: pitfalls, solutions, and future directions. Radiographics 2019;39:2040–52 doi:10.1148/rg.2019190026 pmid:31603734
    CrossRefPubMed
  23. 23.↵
    1. Tessler FN,
    2. Middleton WD,
    3. Grant EG, et al
    . ACR thyroid imaging, reporting and data system (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol 2017;14:587–95 doi:10.1016/j.jacr.2017.01.046 pmid:28372962
    CrossRefPubMed
  24. 24.↵
    1. Kim EK,
    2. Park CS,
    3. Chung WY, et al
    . New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol 2002;178:687–91 doi:10.2214/ajr.178.3.1780687 pmid:11856699
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Lee E,
    2. Ha H,
    3. Kim HJ, et al
    . Differentiation of thyroid nodules on US using features learned and extracted from various convolutional neural networks. Sci Rep 2019;9:19854 doi:10.1038/s41598-019-56395-x pmid:31882683
    CrossRefPubMed
  26. 26.↵
    1. Middleton WD,
    2. Teefey SA,
    3. Reading CC, et al
    . Comparison of performance characteristics of American College of Radiology TI-RADS, Korean Society of Thyroid Radiology TIRADS, and American Thyroid Association Guidelines. AJR Am J Roentgenol 2018;210:1148–54 doi:10.2214/AJR.17.18822 pmid:29629797
    CrossRefPubMed
  27. 27.↵
    1. Youden WJ
    . Index for rating diagnostic tests. Cancer 1950;3:32–35 doi:10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 pmid:15405679
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. DeLong ER,
    2. DeLong DM,
    3. Clarke-Pearson DL
    . Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837–45 pmid:3203132
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Jeong EY,
    2. Kim HL,
    3. Ha EJ, et al
    . Computer-aided diagnosis system for thyroid nodules on ultrasonography: diagnostic performance and reproducibility based on the experience level of operators. Eur Radiol 2019;29:1978–85 doi:10.1007/s00330-018-5772-9 pmid:30350161
    CrossRefPubMed
  30. 30.↵
    1. LeCun Y,
    2. Bengio Y,
    3. Hinton G
    . Deep learning. Nature 2015;521:436–44 doi:10.1038/nature14539 pmid:26017442
    CrossRefPubMed
  31. 31.↵
    1. Park SH,
    2. Han K
    . Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800–09 doi:10.1148/radiol.2017171920 pmid:29309734
    CrossRefPubMed
  32. 32.↵
    1. Ruan JL,
    2. Yang HY,
    3. Liu RB, et al
    . Fine needle aspiration biopsy indications for thyroid nodules: compare a point-based risk stratification system with a pattern-based risk stratification system. Eur Radiol 2019;29:4871–78 doi:10.1007/s00330-018-5992-z pmid:30715590
    CrossRefPubMed
  33. 33.↵
    1. Ha EJ,
    2. Na DG,
    3. Baek JH, et al
    . US fine-needle aspiration biopsy for thyroid malignancy: diagnostic performance of seven society guidelines applied to 2000 thyroid nodules. Radiology 2018;287:893–900 doi:10.1148/radiol.2018171074 pmid:29465333
    CrossRefPubMed
  34. 34.↵
    1. Ha EJ,
    2. Baek JH,
    3. Na DG
    . Deep convolutional neural network models for the diagnosis of thyroid cancer. Lancet Oncol 2019;20:e130 e130 doi:10.1016/S1470-2045(19)30086-5 pmid:30842054
    CrossRefPubMed
  35. 35.↵
    1. Li X,
    2. Zhang S,
    3. Zhang Q, et al
    . Deep convolutional neural network models for the diagnosis of thyroid cancer: authors’ reply. Lancet Oncol 2019;20:e131 doi:10.1016/S1470-2045(19)30083-X pmid:30842055
    CrossRefPubMed
  36. 36.↵
    1. Wildman-Tobriner B,
    2. Buda M,
    3. Hoang JK, et al
    . Using artificial intelligence to revise ACR TI-RADS risk stratification of thyroid nodules: diagnostic accuracy and utility. Radiology 2019;292:112–19 doi:10.1148/radiol.2019182128 pmid:31112088
    CrossRefPubMed
  37. 37.↵
    1. Akkus Z,
    2. Cai J,
    3. Boonrod A, et al
    . A survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow. J Am Coll Radiol 2019;16:1318–28 doi:10.1016/j.jacr.2019.06.004 pmid:31492410
    CrossRefPubMed
  38. 38.↵
    1. Cibas ES,
    2. Ali SZ
    . The 2017 Bethesda System for reporting thyroid cytopathology. Thyroid 2017;27:1341–46 doi:10.1089/thy.2017.0500 pmid:29091573
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Convolutional Neural Network to Stratify the Malignancy Risk of Thyroid Nodules: Diagnostic Performance Compared with the American College of Radiology Thyroid Imaging Reporting and Data System Implemented by Experienced Radiologists
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
G.R. Kim, E. Lee, H.R. Kim, J.H. Yoon, V.Y. Park, J.Y. Kwak
Convolutional Neural Network to Stratify the Malignancy Risk of Thyroid Nodules: Diagnostic Performance Compared with the American College of Radiology Thyroid Imaging Reporting and Data System Implemented by Experienced Radiologists
American Journal of Neuroradiology May 2021, DOI: 10.3174/ajnr.A7149

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Convolutional Neural Network to Stratify the Malignancy Risk of Thyroid Nodules: Diagnostic Performance Compared with the American College of Radiology Thyroid Imaging Reporting and Data System Implemented by Experienced Radiologists
G.R. Kim, E. Lee, H.R. Kim, J.H. Yoon, V.Y. Park, J.Y. Kwak
American Journal of Neuroradiology May 2021, DOI: 10.3174/ajnr.A7149
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS and METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Hydrops Herniation into the Semicircular Canals
  • ASL Sensitivity for Head and Neck Paraganglioma
  • Post SRS Peritumoral Hyperintense Signal of VSs
Show more HEAD AND NECK IMAGING

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire