Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model

K. Zhu, F. Bala, J. Zhang, F. Benali, P. Cimflova, B.J. Kim, R. McDonough, N. Singh, M.D. Hill, M. Goyal, A. Demchuk, B.K. Menon and W. Qiu
American Journal of Neuroradiology May 2023, DOI: https://doi.org/10.3174/ajnr.A7878
K. Zhu
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
dCollege of Electronic Engineering (K.Z.), Xi’an Shiyou University, Xi’an, Shaanxi, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Zhu
F. Bala
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Bala
J. Zhang
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Zhang
F. Benali
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Benali
P. Cimflova
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
cDepartment of Medicine, and Department of Radiology (P.C., M.D.H., A.D.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
eSt. Anne’s University Hospital Brno and Faculty of Medicine (P.C.), Masaryk University, Brno, Czech Republic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Cimflova
B.J. Kim
fDepartment of Neurology and Cerebrovascular Center (B.J.K.), Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.J. Kim
R. McDonough
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
gDepartment of Diagnostic and Interventional Neuroradiology (R.M.), University Hospital Hamburg, Hamburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. McDonough
N. Singh
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Singh
M.D. Hill
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
bDepartment of Community Health Sciences (M.D.H.)
cDepartment of Medicine, and Department of Radiology (P.C., M.D.H., A.D.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.D. Hill
M. Goyal
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Goyal
A. Demchuk
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
cDepartment of Medicine, and Department of Radiology (P.C., M.D.H., A.D.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Demchuk
B.K. Menon
aFrom the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.K. Menon
W. Qiu
hSchool of Life Science and Technology (W.Q.), Huazhong University of Science and Technology, Wuhan, Hubei, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Qiu
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Goyal M,
    2. Menon BK,
    3. van Zwam WH, et al
    ; HERMES Collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016;387:1723–31 doi:10.1016/S0140-6736(16)00163-X pmid:26898852
    CrossRefPubMed
  2. 2.↵
    1. Menon BK,
    2. Hill MD,
    3. Davalos A, et al
    . Efficacy of endovascular thrombectomy in patients with M2 segment middle cerebral artery occlusions: meta-analysis of data from the HERMES Collaboration. J Neurointerv Surg 2019;11:1065–69 doi:10.1136/neurintsurg-2018-014678 pmid:30975736
    Abstract/FREE Full Text
  3. 3.↵
    1. Menon BK,
    2. Al-Ajlan FS,
    3. Najm M, et al
    ; INTERRSeCT Study Investigators. Association of clinical, imaging, and thrombus characteristics with recanalization of visible intracranial occlusion in patients with acute ischemic stroke. JAMA 2018;320:1017–26 doi:10.1001/jama.2018.12498 pmid:30208455
    CrossRefPubMed
  4. 4.↵
    1. Riedel CH,
    2. Zimmermann P,
    3. Jensen-Kondering U, et al
    . The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011;42:1775–77 doi:10.1161/STROKEAHA.110.609693 pmid:21474810
    Abstract/FREE Full Text
  5. 5.↵
    1. Qiu W,
    2. Kuang H,
    3. Nair J, et al
    . Radiomics-based intracranial thrombus features on CT and CTA predict recanalization with intravenous alteplase in patients with acute ischemic stroke. AJNR Am J Neuroradiol 2019;40:39–44 doi:10.3174/ajnr.A5918 pmid:30573458
    Abstract/FREE Full Text
  6. 6.↵
    1. Hofmeister J,
    2. Bernava G,
    3. Rosi A, et al
    . Clot-based radiomics predict a mechanical thrombectomy strategy for successful recanalization in acute ischemic stroke. Stroke 2020;51:2488–94 doi:10.1161/STROKEAHA.120.030334 pmid:32684141
    CrossRefPubMed
  7. 7.↵
    1. Santos EM,
    2. Yoo AJ,
    3. Beenen LF, et al
    ; MR CLEAN Investigators. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke. Neuroradiology 2016;58:133–39 doi:10.1007/s00234-015-1607-4 pmid:26494462
    CrossRefPubMed
  8. 8.↵
    1. Lalys F,
    2. Yan V,
    3. Kaladji A, et al
    . Generic thrombus segmentation from pre- and post-operative CTA. Int J Comput Assist Radiol Surg 2017;12:1501–10 doi:10.1007/s11548-017-1591-8 pmid:28455765
    CrossRefPubMed
  9. 9.↵
    1. Lee K,
    2. Johnson RK,
    3. Yin Y, et al
    . Three-dimensional thrombus segmentation in abdominal aortic aneurysms using graph search based on a triangular mesh. Comput Biol Med 2010;40:271–78 doi:10.1016/j.compbiomed.2009.12.002 pmid:20074719
    CrossRefPubMed
  10. 10.↵
    1. Freiman M,
    2. Esses SJ,
    3. Joskowicz L, et al
    . An iterative model-constrained graph-cut algorithm for abdominal aortic aneurysm thrombus segmentation. In: Proceedings of the 2010 IEEE International Conference on Biomedical Imaging: from Nano to Macro, Rotterdam, the Netherlands. April 14, 2010:672–75
  11. 11.↵
    1. Zhuge F,
    2. Rubin GD,
    3. Sun S, et al
    . An abdominal aortic aneurysm segmentation method: level set with region and statistical information. Med Phys 2006;33:1440–53 doi:10.1118/1.2193247 pmid:16752579
    CrossRefPubMed
  12. 12.↵
    1. Qazi S,
    2. Qazi E,
    3. Wilson AT, et al
    . Identifying thrombus on non-contrast CT in patients with acute ischemic stroke. Diagnostics (Basel) 2021;11:1919 doi:10.3390/diagnostics11101919 pmid:34679617
    CrossRefPubMed
  13. 13.↵
    1. Hill MD,
    2. Goyal M,
    3. Menon BK, et al
    ; ESCAPE-NA1 Investigators. Efficacy and Safety of Nerinetide for the Treatment of Acute Ischaemic Stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 2020;395:878–87 doi:10.1016/S0140-6736(20)30258-0 pmid:32087818
    CrossRefPubMed
  14. 14.↵
    1. Menon BK,
    2. d’Esterre CD,
    3. Qazi EM, et al
    . Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 2015;275:510–20 doi:10.1148/radiol.15142256 pmid:25633505
    CrossRefPubMed
  15. 15.↵
    1. Ospel JM,
    2. Volny O,
    3. Qiu W, et al
    . Impact of multiphase computed tomography angiography for endovascular treatment decision-making on outcomes in patients with acute ischemic stroke. J Stroke 2021;23:377–87 doi:10.5853/jos.2021.00619 pmid:34649382
    CrossRefPubMed
  16. 16.↵
    1. Beare R,
    2. Lowekamp B,
    3. Yaniv Z
    . Image segmentation, registration and characterization in R with SimpleITK. J Stat Soft 2018;86:8 doi:10.18637/jss.v086.i08 pmid:30288153
    CrossRefPubMed
  17. 17.↵
    1. Najm M,
    2. Kuang H,
    3. Federico A, et al
    . Automated brain extraction from head CT and CTA images using convex optimization with shape propagation. Comput Methods Programs Biomed 2019;176:1–8 doi:10.1016/j.cmpb.2019.04.030 pmid:31200897
    CrossRefPubMed
  18. 18.↵
    1. Fedorov A,
    2. Beichel R,
    3. Kalpathy-Cramer J, et al
    . 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012;30:1323–41 doi:10.1016/j.mri.2012.05.001 pmid:22770690
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Yushkevich PA,
    2. Piven J,
    3. Hazlett HC, et al
    . User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116–28 doi:10.1016/j.neuroimage.2006.01.015 pmid:16545965
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Warfield SK,
    2. Zou KH,
    3. Wells WM
    . Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 2004;23:903–21 doi:10.1109/TMI.2004.828354 pmid:15250643
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Navab N,
    2. Hornegger J,
    3. Wells W
    1. Ronneberger O,
    2. Fischer P,
    3. Brox T.
    U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells W, et al., eds. In: Medical Image Computing and Computer-Assisted Intervention, Munich, Germany. October 5–9, 2015
  22. 22.↵
    1. Woo S,
    2. Park J,
    3. Lee JY, et al
    . CBAM: Convolutional Block Attention Module. arXiv July 17, 2018https://arxiv.org/pdf/1807.06521v1.pdf. Accessed October 6, 2018
  23. 23.↵
    1. Feng S,
    2. Zhao H,
    3. Shi F, et al
    . CPFNet: Context Pyramid Fusion Network for Medical Image Segmentation. IEEE Trans Med Imaging 2020;39:3008–18 doi:10.1109/TMI.2020.2983721 pmid:32224453
    CrossRefPubMed
  24. 24.↵
    1. Ma J,
    2. Chen J,
    3. Ng M, et al
    . Loss odyssey in medical image segmentation. Med Image Anal 2021;71:102035 doi:10.1016/j.media.2021.102035 pmid:33813286
    CrossRefPubMed
  25. 25.↵
    1. Mourya GK,
    2. Gogoi M,
    3. Talbar SN, et al
    . Cascaded dilated deep residual network for volumetric liver segmentation from CT image. International Journal of E-Health and Medical Communications 2021;12:34–45 doi:10.4018/IJEHMC.2021010103
    CrossRef
  26. 26.↵
    1. Mukaka MM
    . Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012;24:69–71 pmid:23638278
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Santos EM,
    2. Marquering HA,
    3. Berkhemer OA, et al
    ; MR CLEAN Investigators. Development and validation of intracranial thrombus segmentation on CT angiography in patients with acute ischemic stroke. PLoS One 2014;9:e101985 doi:10.1371/journal.pone.0101985 pmid:25032691
    CrossRefPubMed
  28. 28.↵
    1. Riedel CH,
    2. Jensen U,
    3. Rohr A, et al
    . Assessment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced computed tomography reconstructions. Stroke 2010;41:1659–64 doi:10.1161/STROKEAHA.110.580662 pmid:20595670
    Abstract/FREE Full Text
  29. 29.↵
    1. Lucas C,
    2. Schöttler JJ,
    3. Kemmling A, et al
    . Automatic detection and segmentation of the acute vessel thrombus in cerebral CT. Informatik Aktuell Springer; 2019:74–79 doi:10.1007/978-3-658-25326-4_19
    CrossRef
  30. 30.↵
    1. Mojtahedi M,
    2. Kappelhof M,
    3. Ponomareva E, et al
    . Fully automated thrombus segmentation on CT images of patients with acute ischemic stroke. Diagnostics (Basel) 2022;12:698 doi:10.3390/diagnostics12030698 pmid:35328251
    CrossRefPubMed
  31. 31.↵
    1. Dutra BG,
    2. Tolhuisen ML,
    3. Alves HC
    ; MR CLEAN Registry Investigators, et al. Thrombus imaging characteristics and outcomes in acute ischemic stroke patients undergoing endovascular treatment. Stroke 2019;50:2057–64 doi:10.1161/STROKEAHA.118.024247 pmid:31216961
    CrossRefPubMed
  32. 32.↵
    1. Yoo J,
    2. Baek JH,
    3. Park H, et al
    . Thrombus volume as a predictor of nonrecanalization after intravenous thrombolysis in acute stroke. Stroke 2018;49:2108–15 doi:10.1161/STROKEAHA.118.021864 pmid:30354986
    CrossRefPubMed
  33. 33.↵
    1. Campbell BC,
    2. Kappelhof M,
    3. Fischer U
    . Role of intravenous thrombolytics prior to endovascular thrombectomy. Stroke 2022;53:2085–92 doi:10.1161/STROKEAHA.122.036929 pmid:35354294
    CrossRefPubMed
  34. 34.↵
    1. Huang C,
    2. Tian J,
    3. Yuan C, et al
    . Fully automated segmentation of lower extremity deep vein thrombosis using convolutional neural network. Biomed Res Int 2019;2019:3401683 doi:10.1155/2019/3401683 pmid:31281832
    CrossRefPubMed
  35. 35.↵
    1. Santos EM,
    2. Niessen WJ,
    3. Yoo AJ, et al
    ; MR CLEAN Investigators. Automated entire thrombus density measurements for robust and comprehensive thrombus characterization in patients with acute ischemic stroke. PLoS One 2016;11:e0145641 doi:10.1371/journal.pone.0145641 pmid:26765847
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K. Zhu, F. Bala, J. Zhang, F. Benali, P. Cimflova, B.J. Kim, R. McDonough, N. Singh, M.D. Hill, M. Goyal, A. Demchuk, B.K. Menon, W. Qiu
Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model
American Journal of Neuroradiology May 2023, DOI: 10.3174/ajnr.A7878

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model
K. Zhu, F. Bala, J. Zhang, F. Benali, P. Cimflova, B.J. Kim, R. McDonough, N. Singh, M.D. Hill, M. Goyal, A. Demchuk, B.K. Menon, W. Qiu
American Journal of Neuroradiology May 2023, DOI: 10.3174/ajnr.A7878
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Detection and segmentation of hyperdense middle cerebral artery sign on non-contrast CT using artificial intelligence
  • Regarding "Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model"
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire