This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
ABSTRACT
BACKGROUND AND PURPOSE: Distinguishing gray matter (GM) from white matter (WM) is essential for CT of the brain. The recently established photon-counting detector CT (PCD-CT) technology employs a novel detection technique that might allow more precise measurement of tissue attenuation for an improved delineation of attenuation values (Hounsfield units – HU) and improved image quality in comparison with energy-integrating detector CT (EID-CT). To investigate this, we compared HU, GM vs. WM contrast, and image noise using automated deep learning-based brain segmentations.
MATERIALS AND METHODS: We retrospectively included patients who received either PCD-CT or EID-CT and did not display a cerebral pathology. A deep learning-based segmentation of the GM and WM was used to extract HU. From this, the gray-to-white ratio and contrast-to-noise ratio were calculated.
RESULTS: We included 329 patients with EID-CT (mean age 59.8 ± 20.2 years) and 180 with PCD-CT (mean age 64.7 ± 16.5 years). GM and WM showed significantly lower HU in PCD-CT (GM: 40.4 ± 2.2 HU; WM: 33.4 ± 1.5 HU) compared to EID-CT (GM: 45.1 ± 1.6 HU; WM: 37.4 ± 1.6 HU, p < .001). Standard deviations of HU were also lower in PCD-CT (GM and WM both p < .001) and contrast-tonoise ratio was significantly higher in PCD-CT compared to EID-CT (p < .001). Gray-to-white matter ratios were not significantly different across both modalities (p > .99). In an age-matched subset (n = 157 patients from both cohorts), all findings were replicated.
CONCLUSIONS: This comprehensive comparison of HU in cerebral gray and white matter revealed substantially reduced image noise and an average offset with lower HU in PCD-CT while the ratio between GM and WM remained constant. The potential need to adapt windowing presets based on this finding should be investigated in future studies.
ABBREVIATIONS: CNR = Contrast-to-Noise Ratio; CTDIvol = Volume Computed Tomography Dose Index; EID = Energy-Integrating Detector; GWR = Gray-to-White Matter Ratio; HU = Hounsfield Units; PCD = Photon-Counting Detector; ROI = Region of Interest; VMI = Virtual Monoenergetic Images;
Footnotes
All other authors report no conflict of interest.
- © 2025 by American Journal of Neuroradiology