Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Research ArticleBRAIN

MR Volumetric Analysis of The Piriform Cortex and Cortical Amygdala in Drug-Refractory Temporal Lobe Epilepsy

Pedro M. Gonçalves Pereira, Ricardo Insausti, Emilio Artacho-Pérula, Tuuli Salmenperä, Reetta Kälviäinen and Asla Pitkänen
American Journal of Neuroradiology February 2005, 26 (2) 319-332;
Pedro M. Gonçalves Pereira
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ricardo Insausti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emilio Artacho-Pérula
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tuuli Salmenperä
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Reetta Kälviäinen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Asla Pitkänen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. ↵
    Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 1981;22:489–501
    CrossRefPubMedWeb of Science
  2. ↵
    Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989;30:389–399
    CrossRefPubMedWeb of Science
  3. ↵
    Hauser WA, Kurland LT. The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia 1975;16:1–66
    PubMedWeb of Science
  4. ↵
    Williamson PD, Wieser HG, Delgado-Escueta AV. Clinical characteristics of partial seizures. In: Engel JJ, ed. Surgical Treatment of the Epilepsies. New York: Raven Press,1987;101–120
  5. ↵
    Falconer MA. Mesial temporal (Ammon’s horn) sclerosis as a common cause of epilepsy. Aetiology, treatment, and prevention. Lancet 1974;2:767–770
    PubMedWeb of Science
  6. ↵
    Mathern GW, Adelson PD, Cahan LD, Leite JP. Hippocampal neuron damage in human epilepsy: Meyer’s hypothesis revisited. Prog Brain Res 2002;135:237–251
    PubMed
  7. ↵
    Kälviäinen R, Salmenperä T, Partanen K, Vainio P, Riekkinen P, Sr., Pitkänen A. MRI volumetry and T2 relaxometry of the amygdala in newly diagnosed and chronic temporal lobe epilepsy. Epilepsy Res 1997;28:39–50
    CrossRefPubMedWeb of Science
  8. ↵
    Bernasconi N, Bernasconi A, Caramanos Z, Andermann F, Dubeau F, Arnold DL. Morphometric MRI analysis of the parahippocampal region in temporal lobe epilepsy. Ann N Y Acad Sci 2000;911:495–500
    PubMedWeb of Science
  9. Salmenperä T, Kälviäinen R, Partanen K, Mervaala E, Pitkänen A. MRI volumetry of the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus. Epilepsy Res 2000;40:155–170
    CrossRefPubMedWeb of Science
  10. ↵
    Jutila L, Ylinen A, Partanen K, et al. MR Volumetry of the Entorhinal, Perirhinal, and Temporopolar Cortices in Drug-Refractory Temporal Lobe Epilepsy. AJNR Am J Neuroradiol 2001;22:1490–1501
    Abstract/FREE Full Text
  11. Margerison JH, Corsellis JAN. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 1966;89:499–530
    FREE Full Text
  12. Pitkänen A, Tuunanen J, Kälviäinen R, Partanen K, Salmenperä T. Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res 1998;32:233–253
    CrossRefPubMedWeb of Science
  13. Lopes da Silva FH, Wadman WJ. Pathophysiology of epilepsy. In: Meinardi H, ed. The Epilepsies, Part I: Elsevier Science B. V.,1999
  14. ↵
    Lüders HO. Mesial Temporal Sclerosis. Overview. In: Kotagal P, Lüders HO, eds. The Epilepsies. Etiologies and Prevention: Academic Press,1999;121–124
  15. ↵
    Vogt C, Vogt O. General results of our brain research, second part: The nature of the architectural differences the cerebral cortex [in German]. J Psychol Neurol (Leipzig) 1919 :292–360
  16. ↵
    Insausti R, Amaral DG, Cowan WM. The entorhinal cortex of the monkey: III. Subcortical afferents. J Comp Neurol 1987;264:396–408
    CrossRefPubMedWeb of Science
  17. Price JL. Olfactory System. In: Paxinos G, ed. The Human Nervous System. 2nd ed. San Diego: Academic Press, Inc.,1990;979–998
  18. ↵
    Zatorre RJ, Jones-Gotman M, Evans AC, Meyer E. Functional localization and lateralization of human olfactory cortex. Nature 1992;360:339–340
    CrossRefPubMedWeb of Science
  19. ↵
    Carmichael ST, Clugnet MC, Price JL. Central olfactory connections in the macaque monkey. J Comp Neurol 1994;346:403–434
    CrossRefPubMedWeb of Science
  20. ↵
    Gottfried JA, Deichmann R, Winston JS, Dolan RJ. Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J Neurosci 2002;22:10819–10828
    Abstract/FREE Full Text
  21. ↵
    Fujikawa DG, Itabashi HH, Wu A, Shinmei SS. Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 2000;41:981–991
    CrossRefPubMed
  22. ↵
    Bertram EH. Functional anatomy of spontaneous seizures in a rat model of limbic epilepsy. Epilepsia 1997;38:95–105
    CrossRefPubMedWeb of Science
  23. ↵
    Löscher W, Ebert U. The role of the piriform cortex in kindling. Prog Neurobiol 1996;50:427–481
    CrossRefPubMedWeb of Science
  24. ↵
    Clark M, Post RM, Weiss SR, Cain CJ, Nakajima T. Regional expression of c-fos mRNA in rat brain during the evolution of amygdala kindled seizures. Mol Brain Res 1991;11:55–64
    PubMed
  25. ↵
    Maggio R, Lanaud P, Grayson DR, Gale K. Expression of c-fos mRNA following seizures evoked from an epileptogenic site in the deep prepiriform cortex: regional distribution in brain as shown by in situ hybridization. Exp Neurol 1993;1:11–19
  26. ↵
    Sato M, Racine RJ, McIntyre DC. Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol 1990;76:459–472
    CrossRefPubMedWeb of Science
  27. ↵
    Ebert U, Löscher W. Strong induction of c-fos in the piriform cortex during focal seizures evoked from different limbic brain sites. Brain Res 1995;671:338–344
    PubMed
  28. ↵
    Fujikawa DG. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res 1996;725:11–22
    PubMedWeb of Science
  29. Gorter JA, van Vliet EA, Aronica E, Lopes da Silva FH. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci 2001;13:657–669
    CrossRefPubMedWeb of Science
  30. ↵
    Gorter JA, Gonçalves Pereira PM, van Vliet EA, et al. Neuronal cell death in a rat model for mesial temporal lobe epilepsy is induced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia 2003;44:647–658
    CrossRefPubMedWeb of Science
  31. ↵
    Pirttila TR, Pitkänen A, Tuunanen J, Kauppinen RA. Ex vivo MR microimaging of neuronal damage after kainate-induced status epilepticus in rat: correlation with quantitative histology. Magn Reson Med 2001;46:946–954
    CrossRefPubMed
  32. ↵
    Roch C, Leroy C, Nehlig A, Namer IJ. Magnetic resonance imaging in the study of the lithium-pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia 2002;43:325–335
    CrossRefPubMedWeb of Science
  33. ↵
    Roch C, Leroy C, Nehlig A, Namer IJ. Predictive value of cortical injury for the development of temporal lobe epilepsy in 21-day-old rats: an MRI approach using the lithium- pilocarpine model. Epilepsia 2002;43:1129–1136
    CrossRefPubMedWeb of Science
  34. ↵
    Honack D, Wahnschaffe U, Löscher W. Kindling from stimulation of a highly sensitive locus in the posterior part of the piriform cortex. Comparison with amygdala kindling and effects of antiepileptic drugs. Brain Res 1991;538:196–202
    PubMed
  35. ↵
    Löscher W, Ebert U, Wahnschaffe U, Rundfeldt C. Susceptibility of different cell layers of the anterior and posterior part of the piriform cortex to electrical stimulation and kindling: comparison with the basolateral amygdala and “area tempestas”. Neuroscience 1995;66:265–276
    CrossRefPubMedWeb of Science
  36. ↵
    McIntyre DC, Kelly ME. The parahippocampal cortices and kindling. Ann N Y Acad Sci 2000;911:343–354
    PubMedWeb of Science
  37. ↵
    Racine RJ, Moscher M, Kairiss EW. The role of the piriform cortex in the generation of interictal spikes in the kindled preparation. Brain Res 1988;454:262–274
  38. ↵
    Kelly ME, Staines WA, McIntyre DC. Secondary generalization of hippocampal kindled seizures in rats: examining the role of the piriform cortex. Brain Res 2002;957:152–161
    PubMed
  39. ↵
    Gale K. Progression and generalization of seizure discharge: anatomical and neurochemical substrates. Epilepsia 1988;29:S15–34
  40. ↵
    Halonen T, Tortorella A, Zrebeet H, Gale K. Posterior piriform and perirhinal cortex relay seizures evoked from the area tempestas: role of excitatory and inhibitory amino acid receptors. Brain Res 1994;652:145–148
    CrossRefPubMedWeb of Science
  41. ↵
    Gale K, Zhong P, Miller LP, Murray TF. Amino acid neurotransmitter interactions in ‘area tempestas’: an epileptogenic trigger zone in the deep prepiriform cortex. Epilepsy Res Suppl 1992;8:229–234
    PubMed
  42. ↵
    Gale K, Dubach M. Localization of area tempestas in piriform cortex of the monkey. Soc Neurosci Abstr 1993;19:21
  43. ↵
    Jones-Gotman M, Zatorre RJ, Cendes F, et al. Contribution of medial versus lateral temporal-lobe structures to human odour identification. Brain 1997;120:1845–1856
    Abstract/FREE Full Text
  44. ↵
    Van Paesschen W, King MD, Duncan JS, Connelly A. The amygdala and temporal lobe simple partial seizures: a prospective and quantitative MRI study. Epilepsia 2001;42:857–862
    PubMed
  45. ↵
    Kevetter GA, Winans SS. Connections of the corticomedial amygdala in the golden hamster. II. Eferents of the ‘olfactory amygdala’. J Comp Neurol 1981;197:99–111
    CrossRefPubMedWeb of Science
  46. ↵
    Luskin MB, Price JL. The topographic organization of the assotional fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J Comp Neurol 1983;216:264–291
    CrossRefPubMedWeb of Science
  47. ↵
    Gloor P. The temporal lobe and the limbic system. New York: Oxford University Press, Inc.,1997
  48. ↵
    Gonçalves Pereira PM, Insausti R, Salmenperä T, Kälviäinen R, Pitkänen A. Magnetic resonance volumetric analysis of the piriform cortex and cortical amygdala in chronic temporal lobe epilepsy [Suppl]. Epilepsia 2002;43:300–301
  49. ↵
    Insausti R, Tunon T, Sobreviela T, Insausti AM, Gonzalo LM. The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 1995;355:171–198
    CrossRefPubMedWeb of Science
  50. ↵
    Insausti R, Juottonen K, Soininen H, et al. MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 1998;19:659–671
    Abstract
  51. ↵
    Gundersen HJ, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987;147:229–263
    CrossRefPubMedWeb of Science
  52. ↵
    Howard CV, Reed MG. Estimation of reference volume using the Cavalieri method. In: Howard CV, Reed MG, eds. Unbiased Stereology. Three-dimensional measurement in microscopy: BIOS Scientific Publishers,1998;39–54
  53. Cruz-Orive LM. Systematic sampling in stereology. In: Inst BIS, ed. Proceedings 49th session. Florence,1993;451–468
  54. ↵
    Salmenperä T, Kälviäinen R, Partanen K, Pitkänen A. Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure 2000;9:208–215
    CrossRefPubMedWeb of Science
  55. ↵
    Salmenperä T, Kälviäinen R, Partanen K, Pitkänen A. Hippocampal damage caused by seizures in temporal lobe epilepsy. Lancet 1998;351:35
    CrossRefPubMedWeb of Science
  56. ↵
    Brodmann K. Comparative localization study of the brain according to the principles of cellular structures[in German]. Leipzig: Barth,1909
  57. ↵
    Sorvari H, Soininen H, Paljarvi L, Karkola K, Pitkänen A. Distribution of parvalbumin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 1995;360:185–212
    CrossRefPubMedWeb of Science
  58. ↵
    Rose M. The allocortex in animal and human; first part [in German]. J Psychol Neurol (Leipzig) 1926 :1–260
  59. Price JL. An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J Comp Neurol 1973;1:87–108
  60. Haberly LB, Feig SL. Structure of the piriform cortex of the opossum. II. Fine structure of cell bodies and neuropil. J Comp Neurol 1983;1:69–88
  61. ↵
    Martinez MC, Blanco J, Bullon MM, Agudo FJ. Structure of the piriform cortex of the adult rat. A Golgi study. J Hirnforsch 1987;28:341–348
    PubMedWeb of Science
  62. ↵
    Price JL, Russchen FT, Amaral DG. The Limbic Region. II. The amygdaloid complex. In: Björklund A, Hokfelt T, Swanson LW, eds. Handbook of Chemical Neuroanatomy. Amsterdam: Elsevier,1987;279–388
  63. ↵
    Turner BH, Gupta KC, Mishkin M. The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta. J Comp Neurol 1978;3:381–396
  64. ↵
    Amaral DG, Insausti R. Hippocampal formation. In: Paxinos G, ed. The Human Nervous System. 2nd edition ed. San Diego: Academic Press, Inc.,1990;711–755
  65. ↵
    Rosene DL, Van Hoesen GW. The hippocampal formation of the primate brain. A review of some comparative aspects of cytoarchitecture and connections. In: Jones EG, Peters A, eds. Cerebral Cortex. New York City: Plenum Press,1987;345–456
  66. ↵
    Klingler J. The macroscopic anatomy of Ammons’ formation [in German]. Denkschr Schweiz Naturforsch Ges 1948;78:1–80
  67. ↵
    Cendes F, Andermann F, Gloor P, et al. MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy. Neurology 1993;43:719–725
    Abstract/FREE Full Text
  68. ↵
    Kälviäinen R, Salmenperä T, Partanen K, Vainio P, Riekkinen P, Pitkänen A. Recurrent seizures may cause hippocampal damage in temporal lobe epilepsy. Neurology 1998;50:1377–1382
    Abstract/FREE Full Text
  69. ↵
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–310
    CrossRefPubMedWeb of Science
  70. ↵
    Bernasconi N, Bernasconi A, Andermann F, Dubeau F, Feindel W, Reutens DC. Entorhinal cortex in temporal lobe epilepsy. A quantitative MRI study. Neurology 1999;52:1870–1876
    Abstract/FREE Full Text
  71. ↵
    Bernasconi N, Bernasconi A, Caramanos Z, Antel SB, Andermann F, Arnold DL. Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Brain 2003;126:462–469
    Abstract/FREE Full Text
  72. ↵
    Naidich TP, Daniels DL, Haughton VM, Williams A, Pojunas K, Palacios E. Hippocampal formation and related structures of the limbic lobe: anatomic-MR correlation. Part I. Surface features and coronal sections. Radiology 1987;162:747–754
    PubMedWeb of Science
  73. Watson C, Andermann F, Gloor P, et al. Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 1992;42:1743–1750
    Abstract/FREE Full Text
  74. ↵
    Juottonen K, Laakso MP, Insausti R, et al. Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging 1998;19:15–22
    CrossRefPubMedWeb of Science
  75. ↵
    Convit A, McHugh P, Wolf OT, et al. MRI volume of the amygdala: a reliable method allowing separation from the hippocampal formation. Psychiatry Res 1999;90:113–123
    PubMedWeb of Science
  76. ↵
    Brierley B, Shaw P, David AS. The human amygdala: a systematic review and meta-analysis of volumetric magnetic resonance imaging. Brain Res Brain Res Rev 2002;39:84–105
    CrossRefPubMed
  77. ↵
    McNulty V, Cruz-Orive LM, Roberts N, Holmes CJ, Gual-Arnau X. Estimation of brain compartment volume from MR Cavalieri slices. J Comput Assist Tomogr 2000;24:466–477
    PubMed
  78. ↵
    DeCarli C, Hatta J, Fazilat S, Gaillard WD, Theodore WH. Extratemporal atrophy in patients with complex partial seizures of left temporal origin. Ann Neurol 1998;43:41–45
    CrossRefPubMedWeb of Science
  79. ↵
    Kuzniecky R, Bilir E, Gilliam F, Faught E, Martin R, Hugg J. Quantitative MRI in temporal lobe epilepsy: evidence for fornix atrophy. Neurology 1999;53:496–501
    Abstract/FREE Full Text
  80. ↵
    Ng SE, Lau TN, Hui FK, et al. MRI of the fornix and mamillary body in temporal lobe epilepsy. Neuroradiology 1997;39:551–555
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 26 (2)
American Journal of Neuroradiology
Vol. 26, Issue 2
1 Feb 2005
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MR Volumetric Analysis of The Piriform Cortex and Cortical Amygdala in Drug-Refractory Temporal Lobe Epilepsy
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Pedro M. Gonçalves Pereira, Ricardo Insausti, Emilio Artacho-Pérula, Tuuli Salmenperä, Reetta Kälviäinen, Asla Pitkänen
MR Volumetric Analysis of The Piriform Cortex and Cortical Amygdala in Drug-Refractory Temporal Lobe Epilepsy
American Journal of Neuroradiology Feb 2005, 26 (2) 319-332;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MR Volumetric Analysis of The Piriform Cortex and Cortical Amygdala in Drug-Refractory Temporal Lobe Epilepsy
Pedro M. Gonçalves Pereira, Ricardo Insausti, Emilio Artacho-Pérula, Tuuli Salmenperä, Reetta Kälviäinen, Asla Pitkänen
American Journal of Neuroradiology Feb 2005, 26 (2) 319-332;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • PhyloBrain atlas: a cortical brain MRI atlas following a phylogenetic approach
  • Novel use of Diffusion Tensor Imaging to Delineate the Rat Basolateral Amygdala
  • Mesial Temporal Sclerosis: Accuracy of NeuroQuant versus Neuroradiologist
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Statin Therapy Does Not Affect the Radiographic and Clinical Profile of Patients with TIA and Minor Stroke
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire