Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

OtherPHYSICS REVIEW

Brain Single-Photon Emission CT Physics Principles

R. Accorsi
American Journal of Neuroradiology August 2008, 29 (7) 1247-1256; DOI: https://doi.org/10.3174/ajnr.A1175
R. Accorsi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. ↵
    Donohoe KJ, Frey KA, Gerbaudo VH, et al. Procedure guideline for brain death scintigraphy. J Nucl Med 2003;44:846–51
    FREE Full Text
  2. ↵
    Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology 1963;80:653–61
    CrossRefWeb of Science
  3. ↵
    Jaszczak RJ. The early years of single photon emission tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol 2006;51:R99–15
    CrossRefPubMed
  4. ↵
    Kuhl DE, Edwards RQ. Cylindrical and section radioisotope scanning of the liver and the brain. Radiology 1964;83:926–35
    CrossRefPubMed
  5. ↵
    Wagner HN, ed: Principles of Nuclear Medicine. Philadelphia: Saunders;1995
  6. Sandler MP, Coleman RE, Patton JA, et al. eds. Diagnostic Nuclear Medicine. 4th ed. Baltimore: Lippincott Williams & Wilkins;2002
  7. Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 3rd ed. Philadelphia: Saunders;2003
  8. ↵
    Wernick MN, Aarsvold JN, eds. Emission Tomography: The Fundamentals of SPECT and PET. San Diego: Elsevier;2004
  9. ↵
    Rosenthal MS, Cullom J, Hawkins W, et al. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 1995;36:1489–513
    Abstract/FREE Full Text
  10. ↵
    Groch MW, Erwin WD. SPECT in the year 2000: basic principles. J Nucl Med Tech 2000;28:233–44
    Abstract/FREE Full Text
  11. ↵
    Madsen MT. Recent advances in SPECT imaging. J Nucl Med 2007;48:661–73
    Abstract/FREE Full Text
  12. ↵
    Moore SC, Kouris K, Cullum I. Collimator design for single photon emission tomography. Eur J Nucl Med 1992;19:138–50
    PubMed
  13. ↵
    Catafau AM. Brain SPECT in clinical practice. Part I. Perfusion. J Nucl Med 2001;42:259–71
    Abstract/FREE Full Text
  14. Taber KH, Black KJ, Hurley RA. Blood flow imaging of the brain: 50 years experience. J Neuropsychiatry Clin Neurosci 2005;17:441–46
    PubMed
  15. Camargo EE. Brain SPECT in neurology and psychiatry. J Nucl Med 2001;42:611–23
    Abstract/FREE Full Text
  16. Heiss W-D, Herholz K. Brain receptor imaging. J Nucl Med 2006;47:302–12
    Abstract/FREE Full Text
  17. Frankle WG, Slifstein M, Talbot PS, et al. Neuroreceptor imaging in psychiatry: theory and applications. Int Rev Neurobiol 2005;67:385–440
    CrossRefPubMed
  18. ↵
    Biersack HJ, Klemm E, Menzel C, et al. Interventional brain SPECT: a review. Ann Nucl Med 1996;10:277–80
    PubMed
  19. ↵
    Juni JE, Waxman AD, Devous MD Sr, et al. Procedure guideline for brain perfusion SPECT using technetium-99m radiopharmaceuticals: Society of Nuclear Medicine. J Nucl Med 1998;39:923–26
    FREE Full Text
  20. Beer HF, Blauenstein PA, Hasler PH, et al. In vitro and in vivo evaluation of iodine-123-Ro 16–0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med 1990;31:1007–14
    Abstract/FREE Full Text
  21. Oya S, Choi SR, Hou C, et al. 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM): an improved serotonin transporter ligand. Nucl Med Biol 2000;27:249–54
    CrossRefPubMed
  22. Boja JW, Patel A, Caroll Fl, et al. [125IJRT1–55: a potent ligand for dopamine transporters. Eur J Pharmacol 1991;194:133–34
    CrossRefPubMedWeb of Science
  23. Ichise M, Ballinger JR, Golan H, et al. Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J Nucl Med 1996;37:513–20
    Abstract/FREE Full Text
  24. Kung HF, Pan SG, Kung MP, et al. In vitro and in vivo evaluation of [I-123]IBZM: a potential CNS D2 dopamine receptor imaging agent. J Nucl Med 1989;30:88–92
    Abstract/FREE Full Text
  25. Kung HF, Kasliwal R, Pan S, et al. Dopamine D2 receptor imaging radiopharmaceuticals: synthesis, radiolabeling and in vitro binding of R-(+)- and S-(-)-3-iodo-2-hydoxy-6-methoxy-N-[(l-ethyl-2-pyrrolidinyl)methyl]benzamide. J Med Chem 1988;31:1039–43
    CrossRefPubMed
  26. Kung HF, Kim HJ, Kung MP, et al. Imaging of dopamine transporters in humans with technetium-99m TRODAT-1. Eur J Nucl Med 1996;23:1527–30
    CrossRefPubMedWeb of Science
  27. Brown ML, Keyes JW Jr, Leonard PF, et al. Facial bone scanning by emission tomography. J Nucl Med 1977;18:1184–88
    Abstract/FREE Full Text
  28. Krasnow AZ, Collier BD, Kneeland JB, et al. Comparison of high-resolution MRI and SPECT bone scintigraphy for noninvasive imaging of the temporomandibular joint. J Nucl Med 1987;28:1268–74
    Abstract/FREE Full Text
  29. Ramsay SC, Yeates MG, Ho LCY. Bone scanning in the early assessment of nasal bone graft viability. J Nucl Med 1991;32:33–36
    Abstract/FREE Full Text
  30. de Jong M, Bakker WH, Krenning EP, et al. Yttrium-90 and Indium-111 labelling, receptor binding and biodistribution of [DOTA0, d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med 1997;24:368–71
    PubMedWeb of Science
  31. Balon HR, Goldsmith SJ, Siegel BA, et al. Procedure guideline for somatostatin receptor scintigraphy with 111In-pentetreotide. J Nucl Med 2001;42:1134–38
    FREE Full Text
  32. Mukhin AG, Gundisch D, Horti AG, et al. 5-Iodo-A-85380, an alpha4beta2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 2000;57:642–49
    Abstract/FREE Full Text
  33. Kung MP, Hou C, Zhuang ZP, et al. IMPY: an improved thioflavin-T derivative for in vivo labeling of β-amyloid plaques. Brain Res 2002;956:202–10
    CrossRefPubMedWeb of Science
  34. ↵
    Kung HF, Kung MP, Choi SR. Radiopharmaceuticals for single-photon emission computed tomography brain imaging. Semin Nucl Med 2003;33:2–13
    CrossRefPubMed
  35. ↵
    Muehllehner G, Dudek J, Moyer R. Influence of hole shape on collimator performance. Phys Med Biol 1976;21:242–50
    CrossRefPubMed
  36. ↵
    Metz CE, Atkins FB, Beck RN. The geometric transfer function component for scintillation camera collimators with straight parallel holes. Phys Med Biol 1980;25:1059–70
    CrossRefPubMed
  37. ↵
    Jaszczak RJ, Chang LT, Murphy PH. Single photon emission computed tomography using multi-slice fan beam collimators. IEEE Trans Nuc Sci 1979;NS-26:610–18
    CrossRef
  38. Tsui BM, Gullberg GT, Edgerton ER, et al. Design and clinical utility of a fan beam collimator for SPECT imaging of the head. J Nucl Med 1986;27:810–19
    Abstract/FREE Full Text
  39. ↵
    Genna S, Pang SC, Burrows BA. Applications of fan reconstruction geometries to transmission and emission systems. In: Ter-Pogossian MM, ed. Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine. Baltimore: University Park Press;1977 :139–54
  40. ↵
    Jaszczak RJ, Floyd CE, Manglos SH, et al. Cone beam collimation for single photon emission computed tomography: analysis, simulation, and image reconstruction using filtered backprojection. Med Phys 1986;13:484–89
    CrossRefPubMed
  41. Jaszczak RJ, Greer KL, Coleman RE. SPECT using a specially designed cone-beam collimator. J Nucl Med 1988;29:1398–405
    Abstract/FREE Full Text
  42. ↵
    Li J, Jaszczak RJ, van Mullekom A, et al. Half-cone beam collimation for triple-camera SPECT systems. J Nucl Med 1996;37:498–502
    Abstract/FREE Full Text
  43. ↵
    Park MA, Moore SC, Kijewski MF. Brain SPECT with short focal-length cone-beam collimation. Med Phys 2005;32:2236–44
    CrossRefPubMed
  44. ↵
    Hawman EG, Hsieh J. An astigmatic collimator for high-sensitivity SPECT of the brain. J Nucl Med 1986;27:930
  45. ↵
    Holmes RA, Logan KW, Hasselquist BE, et al. Clinical evaluation of an astigmatic collimator for high-sensitivity SPECT imaging of the brain. J Nucl Med 1987;28:576–77
  46. ↵
    Li J, Jaszczack RJ, Turkington TG, et al. An evaluation of lesion detectability with cone-beam, fanbeam, and parallel-beam collimation in SPECT by continuous ROC study. J Nucl Med 1994;35:135–40
    Abstract/FREE Full Text
  47. ↵
    Jaszczak RJ, Li J, Wang H, et al. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol 1994;39:425–37
    CrossRefPubMed
  48. ↵
    Weber DA, Ivanovic M, Franceschi D, et al. Pinhole SPECT: an approach to in vivo high-resolution SPECT imaging in small laboratory animals. J Nucl Med 1994;35:342–48
    Abstract/FREE Full Text
  49. ↵
    Gilland DR, Johnson EL, Turkington TG, et al. Evaluation of a pinhole collimator for I-131 SPECT head imaging. IEEE Trans Nucl Sci 1996;43:2230–38
    CrossRef
  50. ↵
    Tenney CR, Smith MF, Greer KL, et al. Uranium pinhole collimators for I-131 SPECT imaging. IEEE Trans Nucl Sci 1999;46:1165–71
    CrossRef
  51. ↵
    Tenney CR, Tornai MP, Smith MF, et al. Uranium pinhole collimators for 511-keV photon SPECT imaging of small volumes. IEEE Trans Nucl Sci 2001;48:1483–89
    CrossRef
  52. ↵
    Larsson SA, Bergstrand G, Bergstedt H, et al. A special cut-off-camera for high-resolution SPECT of the head. J Nucl Med 1984;25:1023–30
    Abstract/FREE Full Text
  53. ↵
    Lassen NA, Sveinsdottir E, Kanno I, et al. A fast moving single-photon emission tomograph for regional cerebral blood flow studies in man. J Comput Assist Tomogr 1978;2:661–62
    CrossRefWeb of Science
  54. Genna S, Smith AP. The development of ASPECT, an annular single crystal brain camera for high-efficiency SPECT. IEEE Trans Nucl Sci 1988;35:654–58
    CrossRefWeb of Science
  55. Ouyang J, El Fakhri G, Xia W, et al. The design and manufacture of an annular variable-focusing collimator for high-sensitivity brain SPECT. IEEE Trans Nucl Sci 2006;53:2613–18
    CrossRef
  56. Rogers WL, Clinthorne NH, Shao L, et al. SPRINT II: a second generation single photon ring tomography. IEEE Trans Med Imaging 1988;7:291–97
    CrossRefPubMed
  57. Chang W, Huang G, Tian Z, et al. Initial characterization of a prototype multi-crystal cylindrical SPECT system. IEEE Trans Nucl Sci 1992;39:1084–87
    CrossRef
  58. ↵
    Rowe RK, Aarsvold JN, Barrett HH, et al. A stationary hemispherical SPECT imager for three-dimensional brain imaging. J Nucl Med 1993;34:474–80
    Abstract/FREE Full Text
  59. ↵
    Esser PD, Mitnick RJ, Arliss J, et al. Angular single photon emission computed tomography (SPECT): an improved method for cranial tomographic imaging. J Nucl Med 1983;24:P75
  60. ↵
    Polak JF, Holman BL, Moretti J-L, et al. I-123 HIPDM brain imaging with a rotating gamma camera and slant-hole collimator. J Nucl Med 1984;25:495–98
    Abstract/FREE Full Text
  61. ↵
    Liu J, Chang W, Loncaric S. Comparison of different imaging geometries of brain SPECT systems. IEEE Trans Nucl Sci 1995;42:1147–53
    CrossRef
  62. ↵
    Fulton RR, Eberl S, Meikle SR, et al. A practical 3D tomographic method for correcting patient head motion in clinical SPECT. IEEE Trans Nucl Sci 1999;46:667–72
    CrossRef
  63. ↵
    Smith MF, Jaszczak RJ. A rotating parallel-hole collimator for high-resolution imaging of medium energy radionuclides. IEEE Trans Nucl Sci 1998;45:2102–12
    CrossRef
  64. ↵
    Lim CB, Chang LT, Jaszczak RJ. Performance analysis of three camera configurations for single photon emission computed tomography. IEEE Trans on Nucl Sci 1980;27:559–68
    CrossRef
  65. ↵
    Jaszczak RJ, Tsui BMW. Single photon emission computed tomography (SPECT). In: Wagner HN, ed. Principles of Nuclear Medicine. Philadelphia: Saunders;1995
  66. ↵
    Orlov SS. Theory of three dimensional reconstruction. I. Conditions for a complete set of projections. Sov Phys Crystallogr 1975;20:312–14
  67. ↵
    American Society of Nuclear Cardiology. Updated imaging guidelines for nuclear cardiology procedures. J Nucl Cardiol 2001;8 (pt 1):G1–G58
  68. ↵
    Liu Y-H, Lam PT, Sinusas AJ, et al. Differential effect of 180° and 360° acquisition orbits on the accuracy of SPECT imaging: quantitative evaluation in phantoms. J Nucl Med 2002;43:1115–24
    Abstract/FREE Full Text
  69. ↵
    Shih WJ, Wierzbinski B, Liu Y-H. Cardiac SPECT: 360° circular acquisition may resolve defects of 180° data. J Nucl Med 2003;44:995–96
    FREE Full Text
  70. ↵
    Tuy HK. An inversion formula for cone-beam reconstruction. SIAM J Appl Math 1983;43:546–52
    CrossRef
  71. ↵
    Ter-Antonyan R, Jaszczak RJ, Bowsher JE, et al. Brain SPECT simulation using half-cone-beam collimation and single-revolution helical-path acquisition. IEEE Trans Nucl Sci 2007;54:475–79
    CrossRefPubMed
  72. ↵
    Smith BD. Cone-beam tomography: recent advances and a tutorial review. Opt Eng 1990;29:524–34
    CrossRef
  73. ↵
    Kamphuis C, Beekman FJ. A feasibility study of offset cone-beam collimators for combined emission transmission brain SPECT on a dual-head system. IEEE Trans Nucl Sci 1998;45:1250–54
    CrossRef
  74. ↵
    Lalush DS, DiMeo AJ. An observer study evaluating dual-plane circular-orbit cone-beam brain SPECT. J Nucl Med 2002;43:1578–83
    Abstract/FREE Full Text
  75. ↵
    Stone CD, Smith MF, Greer KL, et al. A combined half-cone beam and parallel-hole collimation system for SPECT brain imaging. IEEE Trans Nucl Sci 1998;45:1219–24
    CrossRef
  76. ↵
    Lang TF, Hasegawa BH, Liew SC, et al. Description of a prototype emission-transmission computed-tomography imaging system. J Nucl Med 1992;33:1881–87
    Abstract/FREE Full Text
  77. ↵
    Patton JA, Turkington TG. SPECT/CT physical principles and attenuation correction. J Nucl Med Tech 2008;36:1–10
    Abstract/FREE Full Text
  78. ↵
    Schillaci O. Hybrid SPECT/CT: a new era for SPECT imaging? Eur J Nucl Med Mol Imaging 2005;32:521–24
    CrossRefPubMed
  79. ↵
    van Laere K, Koole M, Kauppinen T, et al. Nonuniform transmission in brain SPECT using 201Tl, 153Gd, and 99mTc static line sources: anthropomorphic dosimetry studies and influence on brain quantification. J Nucl Med 2000;41:2051–62
    Abstract/FREE Full Text
  80. ↵
    Bruyant PP. Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 2002;43:1343–58
    Abstract/FREE Full Text
  81. ↵
    van Laere K, Koole M, Lemahieu I, et al. Image filtering in single-photon emission computed tomography: principles and applications. Comput Med Imaging Graph 2001;25:127–33
    CrossRefPubMed
  82. ↵
    Gilland DR, Tsui BMW, MacCartney WH, et al. Determination of the optimum filter function for SPECT imaging. J Nucl Med 1988;29:643–50
    Abstract/FREE Full Text
  83. ↵
    Perter TM, Lewitt RM. Computed tomography with fan bean geometry. J Comput Assist Tomogr 1977;1:429–36
    PubMed
  84. ↵
    Smith BD. Derivation of the extended fan-beam formula. IEEE Trans Med Imaging 1985;4:177–84
    CrossRefPubMed
  85. ↵
    Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A 1984;1:612–19
    CrossRefWeb of Science
  86. ↵
    Pack JD, Noo F, Clackdoyle R. Cone-beam reconstruction using the backprojection of locally filtered projections. IEEE Trans Med Imaging 2005;24:70–85
    CrossRefPubMed
  87. ↵
    Zhao S, Yu H, Wang G. A unified framework for exact cone-beam reconstruction formulas. Med Phys 2005;32:1712–21
    CrossRefPubMed
  88. ↵
    Tang Q, Zeng GL, Gullberg GT. Analytical fan-beam and cone-beam reconstruction algorithms with uniform attenuation correction for SPECT. Phys Med Biol 2005;50:3153–70
    CrossRefPubMed
  89. ↵
    Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theoret Biol 1970;29:471–82
    CrossRefPubMedWeb of Science
  90. Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason Imag 1984;6:81–94
    CrossRef
  91. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113–22
    CrossRefPubMed
  92. ↵
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–09
    CrossRefPubMed
  93. Browne JA, De Pierro AE. A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography. IEEE Trans Med Imaging 1996;15:687–99
    CrossRefPubMed
  94. ↵
    Mumcuoglu E, Leahy R, Cherry S, et al. Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. IEEE Trans Med Imaging 1994;13:687–701
    CrossRefPubMed
  95. ↵
    Zaidi H, Hasegawa BH. Determination of the attenuation map in emission tomography. J Nucl Med 2003;44:291–315
    Abstract/FREE Full Text
  96. ↵
    Árlig Å, Gustafsson A, Jacobsson L, et al. Attenuation correction in quantitative SPECT of cerebral blood flow: a Monte Carlo study. Phys Med Biol 2000;45:3847–59
    CrossRefPubMedWeb of Science
  97. ↵
    Licho R, Glick SJ, Xia W, et al. Attenuation compensation in 99mTc SPECT brain imaging: a comparison of the use of attenuation maps derived from transmission versus emission data in normal scans. J Nucl Med 1999;40:456–63
    Abstract/FREE Full Text
  98. ↵
    Tsui BM, Gullberg GT, Edgerton ER, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 1989;30:497–507
    Abstract/FREE Full Text
  99. ↵
    Farncombe TH, Gifford HC, Narayanan MV, et al. Assessment of scatter compensation strategies for (67)Ga SPECT using numerical observers and human LROC studies. J Nucl Med 2004;45:802–12
    Abstract/FREE Full Text
  100. ↵
    Matsuda H, Ohnishi T, Asada T, et al. Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 2003;44:1243–52
    Abstract/FREE Full Text
  101. ↵
    Du Y, Tsui BMW, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 2005;24:969–76
    CrossRefPubMed
  102. ↵
    Gullberg GT, Tsui BMW, Crawford CR, et al. Estimation of geometrical parameters for fan beam tomography. Phys Med Biol 1987;32:1581–94
    CrossRef
  103. ↵
    Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761–82. Epub 2004 Mar 31
    CrossRefPubMedWeb of Science
  104. ↵
    Seo Y, Wong KH, Sun M, et al. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system. J Nucl Med 2005;46:868–77
    Abstract/FREE Full Text
  105. King MA, Glick SJ, Pretorius PH, et al. Attenuation, scatter and spatial resolution compensation in SPECT. In: Wernick MN, Aarsvold JN, eds. Emission Tomography: The Fundamentals of SPECT and PET. San Diego: Elsevier;2004 :473–98
  106. El Fakhri G, Kijewski MF, Albert MS, et al. Quantitative SPECT leads to improved performance in discrimination tasks related to prodromal Alzheimer's disease. J Nucl Med 2004;45:2026–31
    Abstract/FREE Full Text
  107. ↵
    Du Y, Tsui BMW, Frey EC. Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol 2006;51:1269–82
    CrossRefPubMed
  108. ↵
    Celler A, Dixon KL, Chang Z, et al. Problems created in attenuation-corrected SPECT images by artifacts in attenuation maps: a simulation study. J Nucl Med 2005;46:335–43
    Abstract/FREE Full Text
  109. ↵
    El Fakhri, G Buvat I, Benali H, et al. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41:1400–08
    Abstract/FREE Full Text
  110. ↵
    Harel F, Genin R, Daou D, et al. Clinical impact of combination of scatter, attenuation correction, and depth-dependent resolution recovery for 201Tl studies. J Nucl Med 2001;42:1451–56
    Abstract/FREE Full Text
  111. ↵
    Bin H, Frey EC. Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents. Phys Med Biol 2006;51:3967–81
    CrossRefPubMed
  112. ↵
    El Fakhri G, Moore SC, Maksud P, et al. Absolute activity quantitation in simultaneous 123I/99mTc brain SPECT. J Nucl Med 2001;42:300–08
    Abstract/FREE Full Text
  113. ↵
    Devous MD, Lowe JL, Payne JK. Dual-isotope brain SPECT imaging with technetium and iodine-123: validation by phantom studies. J Nucl Med 1992;33:2030–35
    Abstract/FREE Full Text
  114. ↵
    Ivanovic M, Weber DA, Loncaric S, et al. Feasibility of dual radionuclide imaging with I-123 and Tc-99m. Med Phys 1994;21:667–74
    CrossRefPubMed
  115. ↵
    Hashimoto J, Sasaki T, Itoh Y, et al. Brain SPECT imaging using three different tracers in subacute cerebral infarction. Clin Nucl Med 1998;23:275–77
    CrossRefPubMed
  116. ↵
    Schramm NU, Ebel G, Engeland U, et al. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 2003;50:315–20
    CrossRef
  117. ↵
    Vastenhouw B, Beekman FJ. Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med 2007;48:487–93
    Abstract/FREE Full Text
  118. ↵
    McElroy DP, MacDonald LR, Beekman FJ, et al. Performance evaluation of A-SPECT: a high-resolution desktop pinhole SPECT system for imaging small animals. IEEE Trans Nucl Sci 2002;49:2139–47
    CrossRef
  119. ↵
    Acton PD, Kung M-P, Hou C., et al. Ultra-high resolution single photon emission tomography imaging of the mouse striatum. Eur J Nucl Med 2002;29:446
    CrossRef
  120. ↵
    Kastis GA, Barber HB, Barrett HH, et al. Gamma-ray imaging using a CdZnTe pixel array and a high-resolution, parallel-hole collimator. IEEE Trans Nucl Sci 2000;47:1923–27
    CrossRef
  121. ↵
    Barrett HH, Swindell W. Radiological Imaging. New York: Academic Press;1981
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 29 (7)
American Journal of Neuroradiology
Vol. 29, Issue 7
August 2008
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Brain Single-Photon Emission CT Physics Principles
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
R. Accorsi
Brain Single-Photon Emission CT Physics Principles
American Journal of Neuroradiology Aug 2008, 29 (7) 1247-1256; DOI: 10.3174/ajnr.A1175

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Brain Single-Photon Emission CT Physics Principles
R. Accorsi
American Journal of Neuroradiology Aug 2008, 29 (7) 1247-1256; DOI: 10.3174/ajnr.A1175
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Isotopes and Radiopharmaceuticals
    • Comparison to Positron-Emission Tomography
    • Collimators
    • SPECT/CT
    • Image Reconstruction
    • Multiple-Isotope Imaging
    • Small Animal Imaging
    • Appendix: Collimator Characteristic Equations
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • 111In-Pentetreotide SPECT/CT in Pulmonary Carcinoid
  • Crossref (28)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Neuroimaging in social anxiety disorder: A systematic review of the literature
    Maria Cecilia Freitas-Ferrari, Jaime E.C. Hallak, Clarissa Trzesniak, Alaor Santos Filho, João Paulo Machado-de-Sousa, Marcos Hortes N. Chagas, Antonio E. Nardi, José Alexandre S. Crippa
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 2010 34 4
  • Structural, functional and molecular imaging of the brain in primary focal dystonia—A review
    E. Zoons, J. Booij, A.J. Nederveen, J.M. Dijk, M.A.J. Tijssen
    NeuroImage 2011 56 3
  • Neuroimaging in cluster headache and other trigeminal autonomic cephalalgias
    Elisa Iacovelli, Gianluca Coppola, Emanuele Tinelli, Francesco Pierelli, Federico Bianco
    The Journal of Headache and Pain 2012 13 1
  • Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles
    Åsa A Barrefelt, Torkel B Brismar, Gabriella Egri, Peter Aspelin, Annie Olsson, Letizia Oddo, Silvia Margheritelli, Kenneth Caidahl, Gaio Paradossi, Lars Dähne, Rimma Axelsson, Moustapha Hassan
    EJNMMI Research 2013 3 1
  • A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging
    J. Mejia, O.Y. Galvis-Alonso, A.A.de Castro, J. Braga, J.P. Leite, M.V. Simões
    Brazilian Journal of Medical and Biological Research 2010 43 12
  • Non-invasive cell-tracking methods for adoptive T cell therapies
    Jelter Van Hoeck, Christian Vanhove, Stefaan C. De Smedt, Koen Raemdonck
    Drug Discovery Today 2022 27 3
  • Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits
    Alena Nikiforova, Igor Sedov
    International Journal of Molecular Sciences 2023 24 13
  • Neuropathology
    Elna-Marie Larsson, Johan Wikström
    2018 145
  • Copper-64-Labeled 1C1m-Fc, a New Tool for TEM-1 PET Imaging and Prediction of Lutetium-177-Labeled 1C1m-Fc Therapy Efficacy and Safety
    Judith Anna Delage, Silvano Gnesin, John O. Prior, Jacques Barbet, Patricia Le Saëc, Séverine Marionneau-Lambot, Sébastien Gouard, Michel Chérel, Mickael Bourgeois, Niklaus Schaefer, David Viertl, Julie Katrin Fierle, Steven Mark Dunn, Alain Faivre-Chauvet
    Cancers 2021 13 23
  • Effects of pharmacological treatments on neuroimaging findings in borderline personality disorder: A review of FDG-PET and fNIRS studies
    Giulia Cattarinussi, Giuseppe Delvecchio, Chiara Moltrasio, Adele Ferro, Fabio Sambataro, Paolo Brambilla
    Journal of Affective Disorders 2022 308

More in this TOC Section

  • Theoretic Basis and Technical Implementations of CT Perfusion in Acute Ischemic Stroke, Part 2: Technical Implementations
  • Theoretic Basis and Technical Implementations of CT Perfusion in Acute Ischemic Stroke, Part 1: Theoretic Basis
  • Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2
Show more PHYSICS REVIEW

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire