Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleAdult Brain
Open Access

A Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple Sclerosis

G. Pontillo, S. Tommasin, R. Cuocolo, M. Petracca, N. Petsas, L. Ugga, A. Carotenuto, C. Pozzilli, R. Iodice, R. Lanzillo, M. Quarantelli, V. Brescia Morra, E. Tedeschi, P. Pantano and S. Cocozza
American Journal of Neuroradiology November 2021, 42 (11) 1927-1933; DOI: https://doi.org/10.3174/ajnr.A7274
G. Pontillo
aFrom the Departments of Advanced Biomedical Sciences (G.P., L.U., E.T., S.C.)
bElectrical Engineering and Information Technology (G.P., M.Q.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Pontillo
S. Tommasin
fDepartment of Human Neuroscience (S.T., C.P., P.P.), Sapienza University of Rome, Rome, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Tommasin
R. Cuocolo
cClinical Medicine and Surgery (R.C.)
dLaboratory of Augmented Reality for Health Monitoring (R.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Cuocolo
M. Petracca
eDepartment of Electrical Engineering and Information Technology, and Department of Neurosciences and Reproductive and Odontostomatological Sciences (M.P., A.C., R.I., R.L., V.B.M.), University of Naples “Federico II,” Naples, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Petracca
N. Petsas
gIstituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Mediterraneo (N.P., P.P.), Pozzilli, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Petsas
L. Ugga
aFrom the Departments of Advanced Biomedical Sciences (G.P., L.U., E.T., S.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Ugga
A. Carotenuto
eDepartment of Electrical Engineering and Information Technology, and Department of Neurosciences and Reproductive and Odontostomatological Sciences (M.P., A.C., R.I., R.L., V.B.M.), University of Naples “Federico II,” Naples, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Carotenuto
C. Pozzilli
fDepartment of Human Neuroscience (S.T., C.P., P.P.), Sapienza University of Rome, Rome, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Pozzilli
R. Iodice
eDepartment of Electrical Engineering and Information Technology, and Department of Neurosciences and Reproductive and Odontostomatological Sciences (M.P., A.C., R.I., R.L., V.B.M.), University of Naples “Federico II,” Naples, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Iodice
R. Lanzillo
eDepartment of Electrical Engineering and Information Technology, and Department of Neurosciences and Reproductive and Odontostomatological Sciences (M.P., A.C., R.I., R.L., V.B.M.), University of Naples “Federico II,” Naples, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Lanzillo
M. Quarantelli
bElectrical Engineering and Information Technology (G.P., M.Q.)
hInstitute of Biostructure and Bioimaging (M.Q.), National Research Council, Naples, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Quarantelli
V. Brescia Morra
eDepartment of Electrical Engineering and Information Technology, and Department of Neurosciences and Reproductive and Odontostomatological Sciences (M.P., A.C., R.I., R.L., V.B.M.), University of Naples “Federico II,” Naples, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Brescia Morra
E. Tedeschi
aFrom the Departments of Advanced Biomedical Sciences (G.P., L.U., E.T., S.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Tedeschi
P. Pantano
fDepartment of Human Neuroscience (S.T., C.P., P.P.), Sapienza University of Rome, Rome, Italy
gIstituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Mediterraneo (N.P., P.P.), Pozzilli, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Pantano
S. Cocozza
aFrom the Departments of Advanced Biomedical Sciences (G.P., L.U., E.T., S.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Cocozza
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • FIG 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIG 1.

    Flow diagram showing inclusion and exclusion criteria.

  • FIG 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIG 2.

    Workflow summarizing the main MR imaging data-processing and data-mining steps. Image illustrates the data set composition as well as the major steps performed for feature extraction, feature selection, and regression modeling. LL indicates lesion load; NAWM, normal-appearing white matter; ChaCo, change in connectivity; T1w, T1-weighted imaging.

Tables

  • Figures
    • View popup
    Table 1:

    Clinicodemographic characteristics of the studied population, along with MR imaging–derived global brain volumesa

    Site 1 (n = 500)Site 2 (n = 104)P Value
    (Site 1 vs Site 2)
    Age (mean) (yr)37.5 (SD, 10.9)38.3 (SD, 9.8).49
    Female sex (No.) (%)349 (69.8)80 (76.9).16
    Secondary-progressive course (No.) (%)72 (14.4)20 (19.2).23
    DD (mean) (yr)9.3 (SD, 8.1)9.2 (SD, 8.5).83
    EDSS (median) (IQR)2.5 (2.0–4.0)2.0 (1.5–4.0).03
    TLV (mean) (mL)10.6 (SD, 13.4)7.2 (SD, 8.6).05
    WBV (mean) (mL)1026.1 (SD, 116.3)1042.6 (SD, 117.4).48
    • Note:—TLV indicates total lesion volume.

    • ↵a Between-group differences regarding MR imaging measures are adjusted for age, sex, and estimated total intracranial volume.

    • View popup
    Table 2:

    Selected radiomics featuresa

    Anatomic LabelFeature ClassClass CharacteristicsFeatureFeature Characteristics
    Right frontal superior orbital cortexFirst orderDescribes the distribution of voxel intensitiesMedianThe median gray level intensity
    Left amygdalaGray level co-occurrence matrixQuantifies how often pairs of pixels with specific values occur in a specified spatial rangeCorrelationMeasures the linear dependency of gray level values to their respective voxels in the matrix
    Left caudate nucleusGray level co-occurrence matrixQuantifies how often pairs of pixels with specific values occur in a specified spatial rangeInformational measure of correlation 1Quantifies the complexity of the texture
    Right thalamusFirst orderDescribes the distribution of voxel intensitiesEnergyMeasures the magnitude of voxel values
    Left cerebellar lobule VIIIGray level dependence matrixQuantifies gray level dependencies (ie, the number of connected voxels within a set distance that are dependent on the center voxel)Small dependence low gray level emphasisMeasures the joint distribution of small dependence with higher gray-level values
    Cerebellar vermis (lobules IV–V)Gray level size-zone matrixQuantifies gray level zones (ie, the number of connected voxels sharing the same intensity value)Size-zone non-uniformityMeasures the variability of size-zone volumes
    Left cerebellar crusFirst orderDescribes the distribution of voxel intensitiesMedianMedian gray level intensity
    • ↵a Characteristics of each selected feature and relative class according to PyRadiomics official documentation (https://pyradiomics.readthedocs.io/en/latest/features.html) are presented, along with the anatomic location (according to Tzourio-Mazoyer et al20) of the corresponding ROI.

    • View popup
    Table 3:

    Machine learning predictive modelsa

    CohortRidge RegressionGaussian ProcessSupport-Vector MachineRandom ForestP Value
    rR2MAErR2MAErR2MAErR2MAE
    Training0.7970.6360.6510.7950.6320.8140.7970.6350.7100.7900.6240.656–
    Internal test0.7410.5490.7250.7330.5370.8740.7340.5380.7540.7340.5390.740.001a
    External test0.7550.5701.1550.7990.6381.2470.7940.6311.1120.7750.6001.162.009b
    • Note:—– indicates not available.

    • ↵a F(1.82, 180.39) = 7.94. Partial η2 = 0.07. df corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.61).

    • ↵b F(1.70, 175.52) = 5.25. Partial η2 = 0.05. df corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.57).

PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (11)
American Journal of Neuroradiology
Vol. 42, Issue 11
1 Nov 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple Sclerosis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
G. Pontillo, S. Tommasin, R. Cuocolo, M. Petracca, N. Petsas, L. Ugga, A. Carotenuto, C. Pozzilli, R. Iodice, R. Lanzillo, M. Quarantelli, V. Brescia Morra, E. Tedeschi, P. Pantano, S. Cocozza
A Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple Sclerosis
American Journal of Neuroradiology Nov 2021, 42 (11) 1927-1933; DOI: 10.3174/ajnr.A7274

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
A Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple Sclerosis
G. Pontillo, S. Tommasin, R. Cuocolo, M. Petracca, N. Petsas, L. Ugga, A. Carotenuto, C. Pozzilli, R. Iodice, R. Lanzillo, M. Quarantelli, V. Brescia Morra, E. Tedeschi, P. Pantano, S. Cocozza
American Journal of Neuroradiology Nov 2021, 42 (11) 1927-1933; DOI: 10.3174/ajnr.A7274
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Leveraging Hand-Crafted Radiomics on Multicenter FLAIR MRI for Predicting Disability Progression in People with Multiple Sclerosis
  • A Radiomic "Warning Sign" of Progression on Brain MRI in Individuals with MS
  • Crossref (18)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Multiple Sclerosis Lesion Analysis in Brain Magnetic Resonance Images: Techniques and Clinical Applications
    Yang Ma, Chaoyi Zhang, Mariano Cabezas, Yang Song, Zihao Tang, Dongnan Liu, Weidong Cai, Michael Barnett, Chenyu Wang
    IEEE Journal of Biomedical and Health Informatics 2022 26 6
  • Artificial Intelligence and Multiple Sclerosis
    Moein Amin, Eloy Martínez-Heras, Daniel Ontaneda, Ferran Prados Carrasco
    Current Neurology and Neuroscience Reports 2024 24 8
  • Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning
    Dongnan Liu, Mariano Cabezas, Dongang Wang, Zihao Tang, Lei Bai, Geng Zhan, Yuling Luo, Kain Kyle, Linda Ly, James Yu, Chun-Chien Shieh, Aria Nguyen, Ettikan Kandasamy Karuppiah, Ryan Sullivan, Fernando Calamante, Michael Barnett, Wanli Ouyang, Weidong Cai, Chenyu Wang
    Frontiers in Neuroscience 2023 17
  • Evaluation of Disability Progression in Multiple Sclerosis via Magnetic-Resonance-Based Deep Learning Techniques
    Alessandro Taloni, Francis Allen Farrelly, Giuseppe Pontillo, Nikolaos Petsas, Costanza Giannì, Serena Ruggieri, Maria Petracca, Arturo Brunetti, Carlo Pozzilli, Patrizia Pantano, Silvia Tommasin
    International Journal of Molecular Sciences 2022 23 18
  • Deep learning-based PET/MR radiomics for the classification of annualized relapse rate in multiple sclerosis
    Sijia Du, Cheng Yuan, Qinming Zhou, Xinyun Huang, Hongping Meng, Meidi Chen, Hanzhong Wang, Qiu Huang, Suncheng Xiang, Dahong Qian, Biao Li, Sheng Chen, Min Zhang
    Multiple Sclerosis and Related Disorders 2023 75
  • Research and application progress of radiomics in neurodegenerative diseases
    Junbang Feng, Ying Huang, Xiaocai Zhang, Qingning Yang, Yi Guo, Yuwei Xia, Chao Peng, Chuanming Li
    Meta-Radiology 2024 2 1
  • A Radiomic “Warning Sign” of Progression on Brain MRI in Individuals with MS
    Brendan S. Kelly, Prateek Mathur, Gerard McGuinness, Henry Dillon, Edward H. Lee, Kristen W. Yeom, Aonghus Lawlor, Ronan P. Killeen
    American Journal of Neuroradiology 2024 45 2
  • Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review
    Hibba Yousef, Brigitta Malagurski Tortei, Filippo Castiglione
    Journal of Neurology 2024 271 10
  • Neuroimaging characterization of multiple sclerosis lesions in pediatric patients: an exploratory radiomics approach
    Ricardo Faustino, Cristina Lopes, Afonso Jantarada, Ana Mendonça, Rafael Raposo, Cristina Ferrão, Joana Freitas, Constança Mateus, Ana Pinto, Ellen Almeida, Nuno Gomes, Liliana Marques, Filipe Palavra
    Frontiers in Neuroscience 2024 18
  • Radiomics in radiology: What the radiologist needs to know about technical aspects and clinical impact
    Riccardo Ferrari, Margherita Trinci, Alice Casinelli, Francesca Treballi, Edoardo Leone, Damiano Caruso, Michela Polici, Lorenzo Faggioni, Emanuele Neri, Michele Galluzzo
    La radiologia medica 2024 129 12

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Cerebral ADC Changes in Fabry Disease
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire