Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

  • Getting new auth cookie, if you see this message a lot, tell someone!
  • Getting new auth cookie, if you see this message a lot, tell someone!
Review ArticleAdult Brain
Open Access

Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology

M. Ak, S.A. Toll, K.Z. Hein, R.R. Colen and S. Khatua
American Journal of Neuroradiology June 2022, 43 (6) 792-801; DOI: https://doi.org/10.3174/ajnr.A7297
M. Ak
aFrom the Department of Radiology (M.A., R.R.C.), University of Pittsburgh, Pittsburgh, Pennsylvania
bHillman Cancer Center (M.A., R.R.C.), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Ak
S.A. Toll
cDepartment of Hematology-Oncology (S.A.T.), Children's Hospital of Michigan, Detroit, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.A. Toll
K.Z. Hein
dDepartment of Leukemia (K.Z.H.), The University of Texas MD Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.Z. Hein
R.R. Colen
aFrom the Department of Radiology (M.A., R.R.C.), University of Pittsburgh, Pittsburgh, Pennsylvania
bHillman Cancer Center (M.A., R.R.C.), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.R. Colen
S. Khatua
eDepartment of Pediatric Hematology-Oncology (S.K.), Mayo Clinic, Rochester, Minnesota.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Khatua
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Zhou M,
    2. Scott J,
    3. Chaudhury B, et al
    . Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol 2018;39:208–16 doi:10.3174/ajnr.A5391 pmid:28982791
    Abstract/FREE Full Text
  2. 2.↵
    1. Colen RR,
    2. Rolfo C,
    3. Ak M, et al
    . Radiomics analysis for predicting pembrolizumab response in patients with advanced rare cancers. J Immunother Cancer 2021;9:e001752 doi:10.1136/jitc-2020-001752 pmid:33849924
    Abstract/FREE Full Text
  3. 3.↵
    1. Lambin P,
    2. Rios-Velazquez E,
    3. Leijenaar R, et al
    . Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012;48:441–46 doi:10.1016/j.ejca.2011.11.036 pmid:22257792
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Habib A,
    2. Jovanovich N,
    3. Hoppe M, et al
    . MRI-based radiomics and radiogenomics in the management of low-grade gliomas: evaluating the evidence for a paradigm shift. J Clin Med 2021;10:1411 doi:10.3390/jcm10071411
    CrossRef
  5. 5.↵
    1. Iv M,
    2. Zhou M,
    3. Shpanskaya K, et al
    . MR imaging-based radiomic signatures of distinct molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 2019;40:154–61 doi:10.3174/ajnr.A5899 pmid:30523141
    Abstract/FREE Full Text
  6. 6.↵
    1. Kickingereder P,
    2. Burth S,
    3. Wick A, et al
    . Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016;280:880–89 doi:10.1148/radiol.2016160845 pmid:27326665
    CrossRefPubMed
  7. 7.↵
    1. Lin P,
    2. Peng YT,
    3. Gao RZ, et al
    . Radiomic profiles in diffuse glioma reveal distinct subtypes with prognostic value. J Cancer Res Clin Oncol 2020;146:1253–62 doi:10.1007/s00432-020-03153-6 pmid:32065261
    CrossRefPubMed
  8. 8.↵
    1. Nakamoto T,
    2. Takahashi W,
    3. Haga A, et al
    . Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis. Sci Rep 2019;9:19411 doi:10.1038/s41598-019-55922-0 pmid:31857632
    CrossRefPubMed
  9. 9.↵
    1. Li M,
    2. Wang H,
    3. Shang Z, et al
    . Ependymoma and pilocytic astrocytoma: Differentiation using radiomics approach based on machine learning. J Clin Neurosci 2020;78:175–80 doi:10.1016/j.jocn.2020.04.080 pmid:32336636
    CrossRefPubMed
  10. 10.↵
    1. Rodriguez Gutierrez D,
    2. Awwad A,
    3. Meijer L, et al
    . Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 2014;35:1009–15 doi:10.3174/ajnr.A3784 pmid:24309122
    Abstract/FREE Full Text
  11. 11.↵
    1. Visser M,
    2. Petr J,
    3. Muller DMJ, et al
    . Accurate MR image registration to anatomical reference space for diffuse glioma. Front Neurosci 2020;14:585 doi:10.3389/fnins.2020.00585 pmid:32581699
    CrossRefPubMed
  12. 12.↵
    1. Akkus Z,
    2. Sedlar J,
    3. Coufalova L, et al
    . Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging. Cancer Imaging 2015;15:12 doi:10.1186/s40644-015-0047-z pmid:26268363
    CrossRefPubMed
  13. 13.↵
    1. Hayes K,
    2. Buist R,
    3. Vincent TJ, et al
    . Comparison of manual and semi-automated segmentation methods to evaluate hippocampus volume in APP and PS1 transgenic mice obtained via in vivo magnetic resonance imaging. J Neurosci Methods 2014;221:103–11 doi:10.1016/j.jneumeth.2013.09.014 pmid:24091139
    CrossRefPubMed
  14. 14.↵
    1. Zhao Z,
    2. Yang G,
    3. Lin Y, et al
    . Automated glioma detection and segmentation using graphical models. PLoS One 2018;13:e0200745 doi:10.1371/journal.pone.0200745 pmid:30130371
    CrossRefPubMed
  15. 15.↵
    1. Kalavathi P,
    2. Prasath VB
    . Methods on skull stripping of MRI head scan images: a review. J Digit Imaging 2016;29:365–79 doi:10.1007/s10278-015-9847-8 pmid:26628083
    CrossRefPubMed
  16. 16.↵
    1. Nyúl LG,
    2. Udupa JK
    . On standardizing the MR image intensity scale. Magn Reson Med 1999;42:1072–81 doi:10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M pmid:10571928
    CrossRefPubMed
  17. 17.↵
    1. Buades A,
    2. Coll B,
    3. Morel JM
    . A review of image denoising algorithms, with a new one. Multiscale Model Simul 2005;4:490–530 doi:10.1137/040616024
    CrossRef
  18. 18.↵
    1. Vovk U,
    2. Pernus F,
    3. Likar B
    . A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007;26:405–21 doi:10.1109/TMI.2006.891486 pmid:17354645
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Cattell R,
    2. Chen S,
    3. Huang C
    . Robustness of radiomic features in magnetic resonance imaging: review and a phantom study. Vis Comput Ind Biomed Art 2019;2:19 doi:10.1186/s42492-019-0025-6 pmid:32240418
    CrossRefPubMed
  20. 20.↵
    1. Chaurasia K,
    2. Garg PA
    . Brief Review on Texture Analysis Methods. American Society of Science and Engineering; 2013
  21. 21.↵
    1. Parekh V,
    2. Jacobs MA
    . Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev 2016;1:207–26 doi:10.1080/23808993.2016.1164013 pmid:28042608
    CrossRefPubMed
  22. 22.↵
    1. Deo RC
    . Machine learning in medicine. Circulation 2015;132:1920–30 doi:10.1161/CIRCULATIONAHA.115.001593 pmid:26572668
    Abstract/FREE Full Text
  23. 23.↵
    1. Colen RR,
    2. Ologun GO,
    3. Zinn P, et al
    . Radiomic signatures to predict response to targeted therapy and immune checkpoint blockade in melanoma patients (pts) on neoadjuvant therapy. J Clin Oncol 2020;38:10067 doi:10.1200/JCO.2020.38.15_suppl.10067
    CrossRef
  24. 24.↵
    1. Elshafeey N,
    2. Kotrotsou A,
    3. Hassan A, et al
    . Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat Commun 2019;10:3170 doi:10.1038/s41467-019-11007-0 pmid:31320621
    CrossRefPubMed
  25. 25.↵
    1. Rathore S,
    2. Akbari H,
    3. Rozycki M, et al
    . Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep 2018;8:5087 doi:10.1038/s41598-018-22739-2 pmid:29572492
    CrossRefPubMed
  26. 26.↵
    1. Sompong C,
    2. Wongthanavasu S
    . Brain tumor segmentation using cellular automata-based fuzzy c-means. In: Proceedings of the International Joint Conference on Computer Science and Software Engineering, Khon Kaen, Thailand. July 13-15;2016:1–6 doi:10.1109/JCSSE.2016.7748902
    CrossRef
  27. 27.↵
    1. Kong DS,
    2. Kim J,
    3. Ryu G, et al
    . Quantitative radiomic profiling of glioblastoma represents transcriptomic expression. Oncotarget 2018;9:6336–45 doi:10.18632/oncotarget.23975 pmid:29464076
    CrossRefPubMed
  28. 28.↵
    1. Parekh VS,
    2. Jacobs MA
    . Deep learning and radiomics in precision medicine. Expert Rev Precis Med Drug Dev 2019;4:59–72 doi:10.1080/23808993.2019.1585805 pmid:31080889
    CrossRefPubMed
  29. 29.↵
    1. Parmar C,
    2. Grossmann P,
    3. Bussink J, et al
    . Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015;5:13087 doi:10.1038/srep13087 pmid:26278466
    CrossRefPubMed
  30. 30.↵
    1. Sasaki T,
    2. Kinoshita M,
    3. Fujita K, et al
    . Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma. Sci Rep 2019;9:14435 doi:10.1038/s41598-019-50849-y pmid:31594994
    CrossRefPubMed
  31. 31.↵
    1. Sun P,
    2. Wang D,
    3. Mok VC, et al
    . Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading. IEEE Access 2019;7:102010–20 doi:10.1109/ACCESS.2019.2928975
    CrossRef
  32. 32.↵
    1. Yang D,
    2. Rao G,
    3. Martinez J, et al
    . Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 2015;42:6725–35 doi:10.1118/1.4934373 pmid:26520762
    CrossRefPubMed
  33. 33.↵
    1. Prasanna P,
    2. Patel J,
    3. Partovi S, et al
    . Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol 2017;27:4188–97 doi:10.1007/s00330-016-4637-3 pmid:27778090
    CrossRefPubMed
  34. 34.↵
    1. Payabvash S,
    2. Aboian M,
    3. Tihan T, et al
    . Machine learning decision tree models for differentiation of posterior fossa tumors using diffusion histogram analysis and structural MRI findings. Front Oncol 2020;10:71 doi:10.3389/fonc.2020.00071 pmid:32117728
    CrossRefPubMed
  35. 35.↵
    1. Kickingereder P,
    2. Gotz M,
    3. Muschelli J, et al
    . Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 2016;22:5765–71 doi:10.1158/1078-0432.CCR-16-0702 pmid:27803067
    Abstract/FREE Full Text
  36. 36.↵
    1. Chen T,
    2. Guestrin C
    . XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery; 2016:785–94
  37. 37.↵
    1. Koçak B,
    2. Durmaz EŞ,
    3. Ateş E, et al
    . Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol 2019;25:485–95 doi:10.5152/dir.2019.19321 pmid:31650960
    CrossRefPubMed
  38. 38.↵
    1. Kumar V,
    2. Gu Y,
    3. Basu S, et al
    . Radiomics: the process and the challenges. Magn Reson Imaging 2012;30:1234–48 doi:10.1016/j.mri.2012.06.010 pmid:22898692
    CrossRefPubMed
  39. 39.↵
    1. Zinn PO,
    2. Majadan B,
    3. Sathyan P, et al
    . Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 2011;6:e25451 doi:10.1371/journal.pone.0025451 pmid:21998659
    CrossRefPubMed
  40. 40.↵
    1. Cho HH,
    2. Lee SH,
    3. Kim J, et al
    . Classification of the glioma grading using radiomics analysis. PeerJ 2018;6:e5982 doi:10.7717/peerj.5982 pmid:30498643
    CrossRefPubMed
  41. 41.↵
    1. Choi YS,
    2. Ahn SS,
    3. Chang JH, et al
    . Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Eur Radiol 2020;30:3834–42 doi:10.1007/s00330-020-06737-5 pmid:32162004
    CrossRefPubMed
  42. 42.↵
    1. Fan Y,
    2. Chen C,
    3. Zhao F, et al
    . Radiomics-based machine learning technology enables better differentiation between glioblastoma and anaplastic oligodendroglioma. Front Oncol 2019;9:1164 doi:10.3389/fonc.2019.01164 pmid:31750250
    CrossRefPubMed
  43. 43.↵
    1. Han Y,
    2. Xie Z,
    3. Zang Y, et al
    . Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. J Neurooncol 2018;140:297–306 doi:10.1007/s11060-018-2953-y pmid:30097822
    CrossRefPubMed
  44. 44.↵
    1. Lohmann P,
    2. Lerche C,
    3. Bauer EK, et al
    . Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep 2018;8:13328 doi:10.1038/s41598-018-31806-7 pmid:30190592
    CrossRefPubMed
  45. 45.↵
    1. Su C,
    2. Jiang J,
    3. Zhang S, et al
    . Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour. Eur Radiol 2019;29:1986 doi:10.1007/s00330-018-5704-8 pmid:30315419
    CrossRefPubMed
  46. 46.↵
    1. Zhang B,
    2. Chang K,
    3. Ramkissoon S, et al
    . Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol 2017;19:109–17 doi:10.1093/neuonc/now121 pmid:27353503
    CrossRefPubMed
  47. 47.↵
    1. Zhou H,
    2. Chang K,
    3. Bai HX, et al
    . Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas. J Neurooncol 2019;142:299–307 doi:10.1007/s11060-019-03096-0 pmid:30661193
    CrossRefPubMed
  48. 48.↵
    1. Kickingereder P,
    2. Bonekamp D,
    3. Nowosielski M, et al
    . Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 2016;281:907–18 doi:10.1148/radiol.2016161382 pmid:27636026
    CrossRefPubMed
  49. 49.↵
    1. Li J,
    2. Liu S,
    3. Qin Y, et al
    . High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: a more precise and personalized gliomas management. PLoS One 2020;15:e0227703 doi:10.1371/journal.pone.0227703 pmid:31968004
    CrossRefPubMed
  50. 50.↵
    1. Hu LS,
    2. Ning S,
    3. Eschbacher JM, et al
    . Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol 2017;19:128–37 doi:10.1093/neuonc/now135 pmid:27502248
    CrossRefPubMed
  51. 51.↵
    1. Colen RR,
    2. Hassan I,
    3. Elshafeey N, et al
    . Shedding light on the 2016 World Health Organization Classification of Tumors of the Central Nervous System in the era of radiomics and radiogenomics. Magn Reson Imaging Clin N Am 2016;24:741–49 doi:10.1016/j.mric.2016.07.001 pmid:27742114
    CrossRefPubMed
  52. 52.↵
    1. Gutman DA,
    2. Cooper LA,
    3. Hwang SN, et al
    . MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 2013;267:560–69 doi:10.1148/radiol.13120118 pmid:23392431
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Zinn PO,
    2. Singh SK,
    3. Kotrotsou A, et al
    . A co-clinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin expressing glioblastoma in patients and xenograft models. Clin Cancer Res 2018;24:6288–99 doi:10.1158/1078-0432.CCR-17-3420 pmid:30054278
    Abstract/FREE Full Text
  54. 54.↵
    1. Reardon DA,
    2. Wen PY
    . Glioma in 2014: unravelling tumour heterogeneity: implications for therapy. Nat Rev Clin Oncol 2015;12:69–70 doi:10.1038/nrclinonc.2014.223 pmid:25560529
    CrossRefPubMed
  55. 55.↵
    1. Lemee JM,
    2. Clavreul A,
    3. Menei P
    . Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone. Neuro Oncol 2015;17:1322–32 doi:10.1093/neuonc/nov119 pmid:26203067
    CrossRefPubMed
  56. 56.↵
    1. Li Y,
    2. Liu X,
    3. Qian Z, et al
    . Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Eur Radiol 2018;28:2960–68 doi:10.1007/s00330-017-5267-0 pmid:29404769
    CrossRefPubMed
  57. 57.↵
    1. Lin AL,
    2. White M,
    3. Miller-Thomas MM, et al
    . Molecular and histologic characteristics of pseudoprogression in diffuse gliomas. J Neurooncol 2016;130:529–33 doi:10.1007/s11060-016-2247-1 pmid:27704386
    CrossRefPubMed
  58. 58.↵
    1. Xi YB,
    2. Guo F,
    3. Xu ZL, et al
    . Radiomics signature: a potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J Magn Reson Imaging 2018;47:1380–87 doi:10.1002/jmri.25860 pmid:28926163
    CrossRefPubMed
  59. 59.↵
    1. Korfiatis P,
    2. Kline TL,
    3. Coufalova L, et al
    . MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 2016;43:2835–44 doi:10.1118/1.4948668 pmid:27277032
    CrossRefPubMed
  60. 60.↵
    1. Akbari H,
    2. Bakas S,
    3. Pisapia JM, et al
    . In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol 2018;20:1068–79 doi:10.1093/neuonc/noy033 pmid:29617843
    CrossRefPubMed
  61. 61.↵
    1. Chang P,
    2. Grinband J,
    3. Weinberg BD, et al
    . Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 2018;39:1201–07 doi:10.3174/ajnr.A5667 pmid:29748206
    Abstract/FREE Full Text
  62. 62.↵
    1. Zinn PO,
    2. Singh SK,
    3. Kotrotsou A, et al
    . Distinct radiomic phenotypes define glioblastoma TP53-PTEN-EGFR mutational landscape. Neurosurgery 2017;64:203–10 doi:10.1093/neuros/nyx316 pmid:28899058
    CrossRefPubMed
  63. 63.↵
    1. Kaloshi G,
    2. Benouaich-Amiel A,
    3. Diakite F, et al
    . Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology 2007;68:1831–36 doi:10.1212/01.wnl.0000262034.26310.a2 pmid:17515545
    CrossRefPubMed
  64. 64.↵
    1. Cha S
    . Neuroimaging in neuro-oncology. Neurotherapeutics 2009;6:465–77 doi:10.1016/j.nurt.2009.05.002 pmid:19560737
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Al-Okaili RN,
    2. Krejza J,
    3. Woo JH, et al
    . Intraaxial brain masses: MR imaging-based diagnostic strategy–initial experience. Radiology 2007;243:539–50 doi:10.1148/radiol.2432060493 pmid:17456876
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Chen C,
    2. Ou X,
    3. Wang J, et al
    . Radiomics-based machine learning in differentiation between glioblastoma and metastatic brain tumors. Front Oncol 2019;9:806 doi:10.3389/fonc.2019.00806 pmid:31508366
    CrossRefPubMed
  67. 67.↵
    1. Kang D,
    2. Park JE,
    3. Kim YH, et al
    . Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol 2018;20:1251–61 doi:10.1093/neuonc/noy021 pmid:29438500
    CrossRefPubMed
  68. 68.↵
    1. Kong Z,
    2. Jiang C,
    3. Zhu R, et al
    . (18)F-FDG-PET-based radiomics features to distinguish primary central nervous system lymphoma from glioblastoma. Neuroimage Clin 2019;23:101912 doi:10.1016/j.nicl.2019.101912 pmid:31491820
    CrossRefPubMed
  69. 69.↵
    1. Ortiz-Ramon R,
    2. Larroza A,
    3. Ruiz-Espana S, et al
    . Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Eur Radiology 2018;28:4514–23 doi:10.1007/s00330-018-5463-6 pmid:29761357
    CrossRefPubMed
  70. 70.↵
    1. Sun R,
    2. Limkin EJ,
    3. Vakalopoulou M, et al
    . A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 2018;19:1180–91 doi:10.1016/S1470-2045(18)30413-3 pmid:30120041
    CrossRefPubMed
  71. 71.↵
    1. Tian Q,
    2. Yan LF,
    3. Zhang X, et al
    . Radiomics strategy for glioma grading using texture features from multiparametric MRI. J Magn Reson Imaging 2018;48:1518–28 doi:10.1002/jmri.26010 pmid:29573085
    CrossRefPubMed
  72. 72.↵
    1. Theresia E,
    2. Malueka RG,
    3. Pranacipta S, et al
    . Association between Ki-67 labeling index and histopathological grading of glioma in Indonesian population. Asian Pac J Cancer Prev 2020;21:1063–68 doi:10.31557/APJCP.2020.21.4.1063 pmid:32334471
    CrossRefPubMed
  73. 73.↵
    1. Grossmann P,
    2. Narayan V,
    3. Chang K, et al
    . Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 2017;19:1688–97 doi:10.1093/neuonc/nox092 pmid:28499022
    CrossRefPubMed
  74. 74.↵
    1. Szychot E,
    2. Youssef A,
    3. Ganeshan B, et al
    . Predicting outcome in childhood diffuse midline gliomas using magnetic resonance imaging based texture analysis. J Neuroradiol 2021;48:243–47 doi:10.1016/j.neurad.2020.02.005 pmid:32184119
    CrossRefPubMed
  75. 75.↵
    1. McGarry SD,
    2. Hurrell SL,
    3. Kaczmarowski AL, et al
    . Magnetic resonance imaging-based radiomic profiles predict patient prognosis in newly diagnosed glioblastoma before therapy. Tomography 2016;2:223–28 doi:10.18383/j.tom.2016.00250 pmid:27774518
    CrossRefPubMed
  76. 76.↵
    1. Narang S,
    2. Kim D,
    3. Aithala S, et al
    . Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma. Oncotarget 2017;8:101244–54 doi:10.18632/oncotarget.20643 pmid:29254160
    CrossRefPubMed
  77. 77.↵
    1. Kotrotsou A,
    2. Zinn PO,
    3. Colen RR
    . Radiomics in brain tumors: an emerging technique for characterization of tumor environment. Magn Reson Imaging Clin N Am 2016;24:719–29 doi:10.1016/j.mric.2016.06.006 pmid:27742112
    CrossRefPubMed
  78. 78.↵
    1. Arevalo OD,
    2. Soto C,
    3. Rabiei P, et al
    . Assessment of glioblastoma response in the era of bevacizumab: longstanding and emergent challenges in the imaging evaluation of pseudoresponse. Front Neurol 2019;10:460 doi:10.3389/fneur.2019.00460 pmid:31133966
    CrossRefPubMed
  79. 79.↵
    1. Okada H,
    2. Weller M,
    3. Huang R, et al
    . Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol 2015;16:e534–42 doi:10.1016/S1470-2045(15)00088-1 pmid:26545842
    CrossRefPubMed
  80. 80.↵
    1. Wan B,
    2. Wang S,
    3. Tu M, et al
    . The diagnostic performance of perfusion MRI for differentiating glioma recurrence from pseudoprogression: a meta-analysis. Medicine (Baltimore) 2017;96:e6333 doi:10.1097/MD.0000000000006333 pmid:28296759
    CrossRefPubMed
  81. 81.↵
    1. Huang RY,
    2. Neagu MR,
    3. Reardon DA, et al
    . Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted: detecting illusive disease, defining response. Front Neurol 2015;6:33 doi:10.3389/fneur.2015.00033 pmid:25755649
    CrossRefPubMed
  82. 82.↵
    1. Paugh BS,
    2. Qu C,
    3. Jones C, et al
    . Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 2010;28:3061–68 doi:10.1200/JCO.2009.26.7252 pmid:20479398
    Abstract/FREE Full Text
  83. 83.↵
    1. Siegel R,
    2. Naishadham D,
    3. Jemal A
    . Cancer statistics, 2013. CA Cancer J Clin 2013;63:11–30 doi:10.3322/caac.21166 pmid:23335087
    CrossRefPubMedWeb of Science
  84. 84.↵
    1. Dong J,
    2. Li L,
    3. Liang S, et al
    . Differentiation between ependymoma and medulloblastoma in children with radiomics approach. Acad Radiol 2021;28:318–27 doi:10.1016/j.acra.2020.02.012 pmid:32222329
    CrossRefPubMed
  85. 85.↵
    1. Fetit AE,
    2. Novak J,
    3. Rodriguez D, et al
    . Radiomics in paediatric neuro-oncology: a multicentre study on MRI texture analysis. NMR Biomed 2018 Jan 3 [Epub ahead of print] doi:10.1002/nbm.3781 pmid:29073725
    CrossRefPubMed
  86. 86.↵
    1. Khatua S,
    2. Cooper LJN,
    3. Sandberg DI, et al
    . Phase I study of intraventricular infusions of autologous ex-vivo-expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro Oncol 2020;22:1214–25 doi:10.1093/neuonc/noaa047 pmid:32152626
    CrossRefPubMed
  87. 87.↵
    1. Zhou H,
    2. Hu R,
    3. Tang O, et al
    . Automatic machine learning to differentiate pediatric posterior fossa tumors on routine MR imaging. AJNR Am J Neuroradiol 2020;41:1279–85 doi:10.3174/ajnr.A6621 pmid:32661052
    Abstract/FREE Full Text
  88. 88.↵
    1. Fetit AE,
    2. Novak J,
    3. Rodriguez D, et al
    . 3D texture analysis of heterogeneous MRI data for diagnostic classification of childhood brain tumours. Stud Health Technol Inform 2015;213:19–22 pmid:26152942
    PubMed
  89. 89.↵
    1. Northcott PA,
    2. Robinson GW,
    3. Kratz CP, et al
    . Medulloblastoma. Nat Rev Dis Primers 2019;5:11 doi:10.1038/s41572-019-0063-6 pmid:30765705
    CrossRefPubMed
  90. 90.↵
    1. Kumar R,
    2. Liu APY,
    3. Orr BA, et al
    . Advances in the classification of pediatric brain tumors through DNA methylation profiling: from research tool to frontline diagnostic. Cancer 2018;124:4168–80 doi:10.1002/cncr.31583 pmid:30255939
    CrossRefPubMed
  91. 91.↵
    1. Wagner MW,
    2. Hainc N,
    3. Khalvati F, et al
    . Radiomics of pediatric low-grade gliomas: toward a pretherapeutic differentiation of BRAF-mutated and BRAF-fused tumors. AJNR Am J Neuroradiol 2021;42:759–65 doi:10.3174/ajnr.A6998 pmid:33574103
    Abstract/FREE Full Text
  92. 92.↵
    1. Foster JB,
    2. Madsen PJ,
    3. Hegde M, et al
    . Immunotherapy for pediatric brain tumors: past and present. Neuro Oncol 2019;21:1226–38 doi:10.1093/neuonc/noz077 pmid:31504801
    CrossRefPubMed
  93. 93.↵
    1. Wang SS,
    2. Bandopadhayay P,
    3. Jenkins MR
    . Towards immunotherapy for pediatric brain tumors. Trends Immunol 2019;40:748–61 doi:10.1016/j.it.2019.05.009 pmid:31229353
    CrossRefPubMed
  94. 94.↵
    1. Barredo Arrieta A,
    2. Díaz-Rodríguez N,
    3. Del Ser J, et al
    . Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 2020;58:82–115 doi:10.1016/j.inffus.2019.12.012
    CrossRef
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 43 (6)
American Journal of Neuroradiology
Vol. 43, Issue 6
1 Jun 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Ak, S.A. Toll, K.Z. Hein, R.R. Colen, S. Khatua
Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology
American Journal of Neuroradiology Jun 2022, 43 (6) 792-801; DOI: 10.3174/ajnr.A7297

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Radiomics in Neuro-Oncology
M. Ak, S.A. Toll, K.Z. Hein, R.R. Colen, S. Khatua
American Journal of Neuroradiology Jun 2022, 43 (6) 792-801; DOI: 10.3174/ajnr.A7297
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (21)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine
    Sanjay Saxena, Biswajit Jena, Neha Gupta, Suchismita Das, Deepaneeta Sarmah, Pallab Bhattacharya, Tanmay Nath, Sudip Paul, Mostafa M. Fouda, Manudeep Kalra, Luca Saba, Gyan Pareek, Jasjit S. Suri
    Cancers 2022 14 12
  • 18F-FDG PET/CT-based radiomics nomogram could predict bone marrow involvement in pediatric neuroblastoma
    Lijuan Feng, Xu Yang, Xia Lu, Ying Kan, Chao Wang, Dehui Sun, Hui Zhang, Wei Wang, Jigang Yang
    Insights into Imaging 2022 13 1
  • Pre-operative MRI radiomics model non-invasively predicts key genomic markers and survival in glioblastoma patients
    Mathew Pease, Zachary C. Gersey, Murat Ak, Ahmed Elakkad, Aikaterini Kotrotsou, Serafettin Zenkin, Nabil Elshafeey, Priyadarshini Mamindla, Vinodh A. Kumar, Ashok J. Kumar, R. R. Colen, P. O. Zinn
    Journal of Neuro-Oncology 2022 160 1
  • Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives
    Francesca Carosi, Elisabetta Broseghini, Laura Fabbri, Giacomo Corradi, Riccardo Gili, Valentina Forte, Roberta Roncarati, Daria Maria Filippini, Manuela Ferracin
    Cancers 2024 16 15
  • Radiomics analysis of contrast-enhanced computed tomography in predicting the International Neuroblastoma Pathology Classification in neuroblastoma
    Haoru Wang, Mingye Xie, Xin Chen, Jin Zhu, Li Zhang, Hao Ding, Zhengxia Pan, Ling He
    Insights into Imaging 2023 14 1
  • Prediction of chemotherapy-related complications in pediatric oncology patients: artificial intelligence and machine learning implementations
    Seda Ardahan Sevgili, Selmin Şenol
    Pediatric Research 2023 93 2
  • AI-driven estimation of O6 methylguanine-DNA-methyltransferase (MGMT) promoter methylation in glioblastoma patients: a systematic review with bias analysis
    Mullapudi Venkata Sai Samartha, Navneet Kumar Dubey, Biswajit Jena, Gorantla Maheswar, Wen-Cheng Lo, Sanjay Saxena
    Journal of Cancer Research and Clinical Oncology 2024 150 2
  • Associating T1-Weighted and T2-Weighted Magnetic Resonance Imaging Radiomic Signatures With Preoperative Symptom Severity in Patients With Cervical Spondylotic Myelopathy
    Nima Alan, Serafettin Zenkin, Raj Swaroop Lavadi, Andrew D. Legarreta, Joseph S. Hudson, Daryl P. Fields, Nitin Agarwal, Priyadarshini Mamindla, Murat Ak, Vishal Peddagangireddy, Lauren Puccio, Thomas J. Buell, D. Kojo Hamilton, Adam S. Kanter, David O. Okonkwo, Pascal O. Zinn, Rivka R. Colen
    World Neurosurgery 2024 184
  • Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas
    Kareem Kudus, Matthias W. Wagner, Khashayar Namdar, Julie Bennett, Liana Nobre, Uri Tabori, Cynthia Hawkins, Birgit Betina Ertl-Wagner, Farzad Khalvati
    Scientific Reports 2024 14 1
  • Radiomic profiles improve prognostication and reveal targets for therapy in cervical cancer
    Mari Kyllesø Halle, Erlend Hodneland, Kari S. Wagner-Larsen, Njål G. Lura, Kristine E. Fasmer, Hege F. Berg, Tomasz Stokowy, Aashish Srivastava, David Forsse, Erling A. Hoivik, Kathrine Woie, Bjørn I. Bertelsen, Camilla Krakstad, Ingfrid S. Haldorsen
    Scientific Reports 2024 14 1

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • ML for Glioma Molecular Subtype Prediction
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire