Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Other Publications
    • ajnr

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • AJNR Case Collection
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • Special Collections
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
    • 2024 AJNR Journal Awards
    • Most Impactful AJNR Articles
  • Multimedia
    • AJNR Podcast
    • AJNR Scantastics
    • Video Articles
  • For Authors
    • Submit a Manuscript
    • Author Policies
    • Fast publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Manuscript Submission Guidelines
    • Imaging Protocol Submission
    • Submit a Case for the Case Collection
  • About Us
    • About AJNR
    • Editorial Board
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

Welcome to the new AJNR, Updated Hall of Fame, and more. Read the full announcements.


AJNR is seeking candidates for the position of Associate Section Editor, AJNR Case Collection. Read the full announcement.

 

OtherNeuroimaging Physics/Functional Neuroimaging/CT and MRI Technology

Recommended Resting-State fMRI Acquisition and Preprocessing Steps for Preoperative Mapping of Language and Motor and Visual Areas in Adult and Pediatric Patients with Brain Tumors and Epilepsy

V.A. Kumar, J. Lee, H.-L. Liu, J.W. Allen, C.G. Filippi, A.I. Holodny, K. Hsu, R. Jain, M.P. McAndrews, K.K. Peck, G. Shah, J.S. Shimony, S. Singh, M. Zeineh, J. Tanabe, B. Vachha, A. Vossough, K. Welker, C. Whitlow, M. Wintermark, G. Zaharchuk and H.I. Sair
American Journal of Neuroradiology February 2024, 45 (2) 139-148; DOI: https://doi.org/10.3174/ajnr.A8067
V.A. Kumar
aFrom the The University of Texas MD Anderson Cancer Center (V.A.K., J.L., H.-L.L., M.W.), Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V.A. Kumar
J. Lee
aFrom the The University of Texas MD Anderson Cancer Center (V.A.K., J.L., H.-L.L., M.W.), Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Lee
H.-L. Liu
aFrom the The University of Texas MD Anderson Cancer Center (V.A.K., J.L., H.-L.L., M.W.), Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H.-L. Liu
J.W. Allen
bEmory University (J.W.A.), Atlanta, Georgia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.W. Allen
C.G. Filippi
cTufts University (C.G.F.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G. Filippi
A.I. Holodny
dMemorial Sloan Kettering Cancer Center (A.I.H., K.K.P.), New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.I. Holodny
K. Hsu
eNew York University (K.H., R.J.), New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Hsu
R. Jain
eNew York University (K.H., R.J.), New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.P. McAndrews
fUniversity of Toronto (M.P.M.), Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.K. Peck
dMemorial Sloan Kettering Cancer Center (A.I.H., K.K.P.), New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.K. Peck
G. Shah
gUniversity of Michigan (G.S.), Ann Arbor, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Shah
J.S. Shimony
hWashington University School of Medicine (J.S.S.), St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.S. Shimony
S. Singh
iUniversity of Texas Southwestern Medical Center (S.S.), Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Zeineh
jStanford University (M.Z., G.Z.), Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Zeineh
J. Tanabe
kUniversity of Colorado (J.T.), Aurora, Colorado
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Tanabe
B. Vachha
lUniversity of Massachusetts (B.V.), Worcester, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Vachha
A. Vossough
mChildren’s Hospital of Philadelphia, University of Pennsylvania (A.V.), Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Vossough
K. Welker
nMayo Clinic (K.W.), Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Welker
C. Whitlow
oWake Forest University (C.W.), Winston-Salem, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Whitlow
M. Wintermark
aFrom the The University of Texas MD Anderson Cancer Center (V.A.K., J.L., H.-L.L., M.W.), Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wintermark
G. Zaharchuk
jStanford University (M.Z., G.Z.), Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zaharchuk
H.I. Sair
pJohns Hopkins University (H.I.S.), Baltimore, Maryland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H.I. Sair
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Leuthardt EC,
    2. Guzman G,
    3. Bandt SK, et al
    . Integration of resting state functional MRI into clinical practice: a large single institution experience. PLoS One 2018;13:e0198349 doi:10.1371/journal.pone.0198349 pmid:29933375
    CrossRefPubMed
  2. 2.↵
    1. Kumar VA,
    2. Heiba IM,
    3. Prabhu SS, et al
    . The role of resting-state functional MRI for clinical preoperative language mapping. Cancer Imaging 2020;20:47 doi:10.1186/s40644-020-00327-w pmid:32653026
    CrossRefPubMed
  3. 3.↵
    1. Maknojia S,
    2. Churchill NW,
    3. Schweizer TA, et al
    . Resting state fMRI: going through the motions. Front Neurosci 2019;13:825 doi:10.3389/fnins.2019.00825 pmid:31456656
    CrossRefPubMed
  4. 4.↵
    1. Huijbers W,
    2. Van Dijk KR,
    3. Boenniger MM, et al
    . Less head motion during MRI under task than resting-state conditions. Neuroimage 2017;147:111–20 doi:10.1016/j.neuroimage.2016.12.002 pmid:27919751
    CrossRefPubMed
  5. 5.↵
    1. Black DF,
    2. Vachha B,
    3. Mian A, et al
    . American Society of Functional Neuroradiology-recommended fMRI paradigm algorithms for presurgical language assessment. AJNR Am J Neuroradiol 2017;38:E65–73 doi:10.3174/ajnr.A5345 pmid:28860215
    Abstract/FREE Full Text
  6. 6.↵
    1. Niederberger M,
    2. Spranger J
    . Delphi technique in health sciences: a map. Front Public Health 2020;8:457 doi:10.3389/fpubh.2020.00457 pmid:33072683
    CrossRefPubMed
  7. 7.↵
    1. Birn RM,
    2. Molloy EK,
    3. Patriat R, et al
    . The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 2013;83:550–58 doi:10.1016/j.neuroimage.2013.05.099 pmid:23747458
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Abdul Wahab NS,
    2. Yahya N,
    3. Yusoff AN, et al
    . Effects of different scan duration on brain effective connectivity among default mode network nodes. Diagnostics (Basel) 2022;12:12 doi:10.3390/diagnostics12051277 pmid:35626432
    CrossRefPubMed
  9. 9.↵
    1. Van Dijk KR,
    2. Hedden T,
    3. Venkataraman A, et al
    . Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010;103:297–321 doi:10.1152/jn.00783.2009 pmid:19889849
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Vakamudi K,
    2. Posse S,
    3. Jung R, et al
    . Real-time presurgical resting-state fMRI in patients with brain tumors: quality control and comparison with task-fMRI and intraoperative mapping. Hum Brain Mapp 2020;41:797–814 doi:10.1002/hbm.24840 pmid:31692177
    CrossRefPubMed
  11. 11.↵
    1. Patriat R,
    2. Molloy EK,
    3. Meier TB, et al
    . The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. Neuroimage 2013;78:463–73 doi:10.1016/j.neuroimage.2013.04.013 pmid:23597935
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Allen EA,
    2. Damaraju E,
    3. Eichele T, et al
    . EEG signatures of dynamic functional network connectivity states. Brain Topogr 2018;31:101–16 doi:10.1007/s10548-017-0546-2 pmid:28229308
    CrossRefPubMed
  13. 13.↵
    1. Tagliazucchi E,
    2. Laufs H
    . Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 2014;82:695–708 doi:10.1016/j.neuron.2014.03.020 pmid:24811386
    CrossRefPubMed
  14. 14.↵
    1. Wang J,
    2. Han J,
    3. Nguyen VT, et al
    . Improving the test-retest reliability of resting state fMRI by removing the impact of sleep. Front Neurosci 2017;11:249 doi:10.3389/fnins.2017.00249 pmid:28533739
    CrossRefPubMed
  15. 15.↵
    1. Agcaoglu O,
    2. Wilson TW,
    3. Wang YP, et al
    . Resting state connectivity differences in eyes open versus eyes closed conditions. Hum Brain Mapp 2019;40:2488–98 doi:10.1002/hbm.24539 pmid:30720907
    CrossRefPubMed
  16. 16.↵
    1. Zou Q,
    2. Miao X,
    3. Liu D, et al
    . Reliability comparison of spontaneous brain activities between BOLD and CBF contrasts in eyes-open and eyes-closed resting states. Neuroimage 2015;121:91–10 doi:10.1016/j.neuroimage.2015.07.044 pmid:26226087
    CrossRefPubMed
  17. 17.↵
    1. Costumero V,
    2. Bueichekú E,
    3. Adrián-Ventura J, et al
    . Opening or closing eyes at rest modulates the functional connectivity of V1 with default and salience networks. Sci Rep 2020;10:9137 doi:10.1038/s41598-020-66100-y pmid:32499585
    CrossRefPubMed
  18. 18.↵
    1. Wei J,
    2. Chen T,
    3. Li C, et al
    . Eyes-open and eyes-closed resting states with opposite brain activity in sensorimotor and occipital regions: multidimensional evidences from machine learning perspective. Front Hum Neurosci 2018;12:422 doi:10.3389/fnhum.2018.00422 pmid:30405376
    CrossRefPubMed
  19. 19.↵
    1. Wang Z,
    2. Liu J,
    3. Zhong N, et al
    . Changes in the brain intrinsic organization in both on-task state and post-task resting state. Neuroimage 2012;62:394–407 doi:10.1016/j.neuroimage.2012.04.051 pmid:22569542
    CrossRefPubMed
  20. 20.↵
    1. Tung KC,
    2. Uh J,
    3. Mao D, et al
    . Alterations in resting functional connectivity due to recent motor task. Neuroimage 2013;78:316–24 doi:10.1016/j.neuroimage.2013.04.006 pmid:23583747
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Feinberg DA,
    2. Moeller S,
    3. Smith SM, et al
    . Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 2010;5:e15710 doi:10.1371/journal.pone.0015710 pmid:21187930
    CrossRefPubMed
  22. 22.↵
    1. Smith SM,
    2. Beckmann CF,
    3. Andersson J, et al
    ; WU-Minn HCP Consortium. Resting-state fMRI in the Human Connectome Project. Neuroimage 2013;80:144–68 doi:10.1016/j.neuroimage.2013.05.039 pmid:23702415
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Voets NL,
    2. Plaha P,
    3. Parker Jones O, et al
    . Presurgical localization of the primary sensorimotor cortex in gliomas: when is resting state FMRI beneficial and sufficient? Clin Neuroradiol 2021;31:245–56 doi:10.1007/s00062-020-00879-1 pmid:32274518
    CrossRefPubMed
  24. 24.↵
    1. Parker D,
    2. Liu X,
    3. Razlighi QR
    . Optimal slice timing correction and its interaction with fMRI parameters and artifacts. Med Image Anal 2017;35:434–45 doi:10.1016/j.media.2016.08.006 pmid:27589578
    CrossRefPubMed
  25. 25.↵
    1. Birn RM,
    2. Diamond JB,
    3. Smith MA, et al
    . Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 2006;31:1536–48 doi:10.1016/j.neuroimage.2006.02.048 pmid:16632379
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Lin FH,
    2. Nummenmaa A,
    3. Witzel T, et al
    . Physiological noise reduction using volumetric functional magnetic resonance inverse imaging. Hum Brain Mapp 2012;33:2815–30 doi:10.1002/hbm.21403 pmid:21954026
    CrossRefPubMed
  27. 27.↵
    1. Caballero-Gaudes C,
    2. Reynolds RC
    . Methods for cleaning the BOLD fMRI signal. Neuroimage 2017;154:128–49 doi:10.1016/j.neuroimage.2016.12.018 pmid:27956209
    CrossRefPubMed
  28. 28.↵
    1. Glover GH,
    2. Li TQ,
    3. Ress D
    . Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000;44:162–67 doi:10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E pmid:10893535
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Behzadi Y,
    2. Restom K,
    3. Liau J, et al
    . A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 2007;37:90–101 doi:10.1016/j.neuroimage.2007.04.042 pmid:17560126
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Golestani AM,
    2. Chen JJ
    . Performance of temporal and spatial independent component analysis in identifying and removing low-frequency physiological and motion effects in resting-state fMRI. Front Neurosci 2022;16:867243 doi:10.3389/fnins.2022.867243 pmid:35757543
    CrossRefPubMed
  31. 31.↵
    1. Power JD,
    2. Plitt M,
    3. Laumann TO, et al
    . Sources and implications of whole-brain fMRI signals in humans. Neuroimage 2017;146:609–25 doi:10.1016/j.neuroimage.2016.09.038 pmid:27751941
    CrossRefPubMed
  32. 32.↵
    1. Frank LR,
    2. Buxton RB,
    3. Wong EC
    . Estimation of respiration-induced noise fluctuations from undersampled multislice fMRI data. Magn Reson Med 2001;45:635–44 doi:10.1002/mrm.1086 pmid:11283992
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Naganawa S,
    2. Nihashi T,
    3. Fukatsu H, et al
    . Pre-surgical mapping of primary motor cortex by functional MRI at 3 T: effects of intravenous administration of Gd-DTPA. Eur Radiol 2004;14:112–14 doi:10.1007/s00330-003-2147-6 pmid:14600780
    CrossRefPubMed
  34. 34.↵
    1. Vachha B,
    2. Huang SY
    . MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond. Eur Radiol Exp 2021;5:35 doi:10.1186/s41747-021-00216-2 pmid:34435246
    CrossRefPubMed
  35. 35.↵
    1. Garcia-Eulate R,
    2. Garcia-Garcia D,
    3. Dominguez PD, et al
    . Functional bold MRI: advantages of the 3 T vs. the 1.5 T. Clin Imaging 2011;35:236–41 doi:10.1016/j.clinimag.2010.07.003 pmid:21513865
    CrossRefPubMed
  36. 36.↵
    1. Krasnow B,
    2. Tamm L,
    3. Greicius MD, et al
    . Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage 2003;18:813–26 doi:10.1016/s1053-8119(03)00002-8 pmid:12725758
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Gorgolewski KJ,
    2. Mendes N,
    3. Wilfling D, et al
    . A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures. Sci Data 2015;2:140054 doi:10.1038/sdata.2014.54 pmid:25977805
    CrossRefPubMed
  38. 38.↵
    1. Bianciardi M,
    2. Fukunaga M,
    3. van Gelderen P, et al
    . Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magn Reson Imaging 2009;27:1019–29 doi:10.1016/j.mri.2009.02.004 pmid:19375260
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Jiang A,
    2. Kennedy DN,
    3. Baker JR, et al
    . Motion detection and correction in functional MR imaging. Human Brain Mapping 1995;3:224–35 doi:10.1002/hbm.460030306
    CrossRefWeb of Science
  40. 40.↵
    1. Jo HJ,
    2. Gotts SJ,
    3. Reynolds RC, et al
    . Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. J Appl Math 2013;2013:10.1155/2013/935154 doi:10.1155/2013/935154 pmid:24415902
    CrossRefPubMed
  41. 41.↵
    1. Power JD,
    2. Barnes KA,
    3. Snyder AZ, et al
    . Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012;59:2142–54 doi:10.1016/j.neuroimage.2011.10.018 pmid:22019881
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Oakes TR,
    2. Johnstone T,
    3. Ores Walsh KS, et al
    . Comparison of fMRI motion correction software tools. Neuroimage 2005;28:529–43 doi:10.1016/j.neuroimage.2005.05.058 pmid:16099178
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Beall EB,
    2. Lowe MJ
    . SimPACE: generating simulated motion corrupted BOLD data with synthetic-navigated acquisition or the development and evaluation of SLOMOCO: a new, highly effective slicewise motion correction. Neuroimage 2014;101:21–34 doi:10.1016/j.neuroimage.2014.06.038 pmid:24969568
    CrossRefPubMed
  44. 44.↵
    1. Johnstone T,
    2. Ores Walsh KS,
    3. Greischar LL, et al
    . Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 2006;27:779–88 doi:10.1002/hbm.20219 pmid:16456818
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Woods RP,
    2. Cherry SR,
    3. Mazziotta JC
    . Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 1992;16:620–33 doi:10.1097/00004728-199207000-00024 pmid:1629424
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Woods RP,
    2. Mazziotta JC,
    3. Cherry SR
    . MRI-PET registration with automated algorithm. J Comput Assist Tomogr 1993;17:536–46 doi:10.1097/00004728-199307000-00004 pmid:8331222
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Friston KJ,
    2. Williams S,
    3. Howard R, et al
    . Movement-related effects in fMRI time-series. Magn Reson Med 1996;35:346–55 doi:10.1002/mrm.1910350312 pmid:8699946
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Sladky R,
    2. Friston KJ,
    3. Tröstl J, et al
    . Slice-timing effects and their correction in functional MRI. Neuroimage 2011;58:588–94 doi:10.1016/j.neuroimage.2011.06.078 pmid:21757015
    CrossRefPubMed
  49. 49.↵
    1. Parker DB,
    2. Razlighi QR
    . The benefit of slice timing correction in common fMRI preprocessing pipelines. Front Neurosci 2019;13:821 doi:10.3389/fnins.2019.00821 pmid:31551667
    CrossRefPubMed
  50. 50.↵
    1. Poldrack RM,
    2. Mumford JA,
    3. Nichols TE
    . Handbook of Functional MRI Data Analysis. Cambridge University Press; 2011
  51. 51.↵
    1. Simmons A,
    2. Tofts PS,
    3. Barker GJ, et al
    . Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Med 1994;32:121–28 doi:10.1002/mrm.1910320117 pmid:8084227
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Patel AX,
    2. Kundu P,
    3. Rubinov M, et al
    . A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Neuroimage 2014;95:287–304 doi:10.1016/j.neuroimage.2014.03.012 pmid:24657353
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Power JD,
    2. Plitt M,
    3. Kundu P, et al
    . Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection. PLoS One 2017;12:e0182939 doi:10.1371/journal.pone.0182939 pmid:28880888
    CrossRefPubMed
  54. 54.↵
    1. Tanabe J,
    2. Miller D,
    3. Tregellas J, et al
    . Comparison of detrending methods for optimal fMRI preprocessing. Neuroimage 2002;15:902–07 doi:10.1006/nimg.2002.1053 pmid:11906230
    CrossRefPubMed
  55. 55.↵
    1. Kopel R,
    2. Sladky R,
    3. Laub P, et al
    . No time for drifting: comparing performance and applicability of signal detrending algorithms for real-time fMRI. Neuroimage 2019;191:421–29 doi:10.1016/j.neuroimage.2019.02.058 pmid:30818024
    CrossRefPubMed
  56. 56.↵
    1. Muschelli J,
    2. Nebel MB,
    3. Caffo BS, et al
    . Reduction of motion-related artifacts in resting state fMRI using aCompCor. Neuroimage 2014;96:22–35 doi:10.1016/j.neuroimage.2014.03.028 pmid:24657780
    CrossRefPubMed
  57. 57.↵
    1. Middlebrooks EH,
    2. Frost CJ,
    3. Tuna IS, et al
    . Reduction of motion artifacts and noise using independent component analysis in task-based functional MRI for preoperative planning in patients with brain tumor. AJNR Am J Neuroradiol 2017;38:336–42 doi:10.3174/ajnr.A4996 pmid:28056453
    Abstract/FREE Full Text
  58. 58.↵
    1. Hallquist MN,
    2. Hwang K,
    3. Luna B
    . The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 2013;82:208–25 doi:10.1016/j.neuroimage.2013.05.116 pmid:23747457
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Power JD,
    2. Mitra A,
    3. Laumann TO, et al
    . Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 2014;84:320–41 doi:10.1016/j.neuroimage.2013.08.048 pmid:23994314
    CrossRefPubMed
  60. 60.↵
    1. Fox MD,
    2. Zhang D,
    3. Snyder AZ, et al
    . The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 2009;101:3270–83 doi:10.1152/jn.90777.2008 pmid:19339462
    CrossRefPubMedWeb of Science
  61. 61.
    1. Aguirre GK,
    2. Zarahn E,
    3. D'Esposito M
    . The inferential impact of global signal covariates in functional neuroimaging analyses. Neuroimage 1998;8:302–06 doi:10.1006/nimg.1998.0367 pmid:9758743
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Macey PM,
    2. Macey KE,
    3. Kumar R, et al
    . A method for removal of global effects from fMRI time series. Neuroimage 2004;22:360–66 doi:10.1016/j.neuroimage.2003.12.042 pmid:15110027
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. Scholvinck ML,
    2. Maier A,
    3. Ye FQ, et al
    . Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A 2010;107:10238–43 doi:10.1073/pnas.0913110107 pmid:20439733
    Abstract/FREE Full Text
  64. 64.↵
    1. Yan CG,
    2. Cheung B,
    3. Kelly C, et al
    . A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 2013;76:183–201 doi:10.1016/j.neuroimage.2013.03.004 pmid:23499792
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Satterthwaite TD,
    2. Wolf DH,
    3. Loughead J, et al
    . Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 2012;60:623–32 doi:10.1016/j.neuroimage.2011.12.063 pmid:22233733
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Power JD,
    2. Plitt M,
    3. Gotts SJ, et al
    . Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data. Proc Natl Acad Sci U S A 2018;115:E2105–14 doi:10.1073/pnas.1720985115 pmid:29440410
    Abstract/FREE Full Text
  67. 67.↵
    1. Lowe MJ,
    2. Mock BJ,
    3. Sorenson JA
    . Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 1998;7:119–32 doi:10.1006/nimg.1997.0315 pmid:9558644
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Vincent JL,
    2. Snyder AZ,
    3. Fox MD, et al
    . Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 2006;96:3517–31 doi:10.1152/jn.00048.2006 pmid:16899645
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Joel SE,
    2. Caffo BS,
    3. van Zijl PC, et al
    . On the relationship between seed-based and ICA-based measures of functional connectivity. Magn Reson Med 2011;66:644–57 doi:10.1002/mrm.22818 pmid:21394769
    CrossRefPubMed
  70. 70.↵
    1. Chai XJ,
    2. Castañón AN,
    3. Ongür D, et al
    . Anticorrelations in resting state networks without global signal regression. Neuroimage 2012;59:1420–28 doi:10.1016/j.neuroimage.2011.08.048 pmid:21889994
    CrossRefPubMedWeb of Science
  71. 71.↵
    1. Anderson JS,
    2. Druzgal TJ,
    3. Lopez-Larson M, et al
    . Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum Brain Mapp 2011;32:919–34 doi:10.1002/hbm.21079 pmid:20533557
    CrossRefPubMedWeb of Science
  72. 72.↵
    1. Murphy K,
    2. Birn RM,
    3. Handwerker DA, et al
    . The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 2009;44:893–905 doi:10.1016/j.neuroimage.2008.09.036 pmid:18976716
    CrossRefPubMedWeb of Science
  73. 73.↵
    1. Gotts SJ,
    2. Saad ZS,
    3. Jo HJ, et al
    . The perils of global signal regression for group comparisons: a case study of autism spectrum disorders. Front Hum Neurosci 2013;7:356 doi:10.3389/fnhum.2013.00356 pmid:23874279
    CrossRefPubMed
  74. 74.↵
    1. Hahamy A,
    2. Calhoun V,
    3. Pearlson G, et al
    . Save the global: global signal connectivity as a tool for studying clinical populations with functional magnetic resonance imaging. Brain Connect 2014;4:395–403 doi:10.1089/brain.2014.0244 pmid:24923194
    CrossRefPubMed
  75. 75.↵
    1. Murphy K,
    2. Fox MD
    . Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 2017;154:169–73 doi:10.1016/j.neuroimage.2016.11.052 pmid:27888059
    CrossRefPubMed
  76. 76.↵
    1. Wee CY,
    2. Yap PT,
    3. Denny K, et al
    . Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PLoS One 2012;7:e37828 doi:10.1371/journal.pone.0037828 pmid:22666397
    CrossRefPubMed
  77. 77.↵
    1. Shirer WR,
    2. Jiang H,
    3. Price CM, et al
    . Optimization of rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination. Neuroimage 2015;117:67–79 doi:10.1016/j.neuroimage.2015.05.015 pmid:25987368
    CrossRefPubMed
  78. 78.↵
    1. Risk BB,
    2. Murden RJ,
    3. Wu J, et al
    . Which multiband factor should you choose for your resting-state fMRI study? Neuroimage 2021;234:117965 doi:10.1016/j.neuroimage.2021.117965 pmid:33744454
    CrossRefPubMed
  79. 79.↵
    1. Van Dijk KR,
    2. Sabuncu MR,
    3. Buckner RL
    . The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012;59:431–38 doi:10.1016/j.neuroimage.2011.07.044 pmid:21810475
    CrossRefPubMedWeb of Science
  80. 80.↵
    1. Alakorkko T,
    2. Saarimaki H,
    3. Glerean E, et al
    . Effects of spatial smoothing on functional brain networks. Eur J Neurosci 2017;46:2471–80 doi:10.1111/ejn.13717 pmid:28922510
    CrossRefPubMed
  81. 81.↵
    1. Mikl M,
    2. Marecek R,
    3. Hlustik P, et al
    . Effects of spatial smoothing on fMRI group inferences. Magn Reson Imaging 2008;26:490–503 doi:10.1016/j.mri.2007.08.006 pmid:18060720
    CrossRefPubMedWeb of Science
  82. 82.↵
    1. Kokkonen SM,
    2. Nikkinen J,
    3. Remes J, et al
    . Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magn Reson Imaging 2009;27:733–40 doi:10.1016/j.mri.2008.11.002 pmid:19110394
    CrossRefPubMed
  83. 83.↵
    1. Huang H,
    2. Ding Z,
    3. Mao D, et al
    . PreSurgMapp: a MATLAB Toolbox for presurgical mapping of eloquent functional areas based on task-related and resting-state functional MRI. Neuroinformatics 2016;14:421–38 doi:10.1007/s12021-016-9304-y pmid:27221107
    CrossRefPubMed
  84. 84.↵
    1. Friston KJ,
    2. Holmes AP,
    3. Poline JB, et al
    . Analysis of fMRI time-series revisited. Neuroimage 1995;2:45–53 doi:10.1006/nimg.1995.1007 pmid:9343589
    CrossRefPubMedWeb of Science
  85. 85.↵
    1. Ball T,
    2. Breckel TP,
    3. Mutschler I, et al
    . Variability of fMRI-response patterns at different spatial observation scales. Hum Brain Mapp 2012;33:1155–71 doi:10.1002/hbm.21274 pmid:21404370
    CrossRefPubMed
  86. 86.↵
    1. Pajula J,
    2. Tohka J
    . Effects of spatial smoothing on inter-subject correlation based analysis of FMRI. Magn Reson Imaging 2014;32:1114–24 doi:10.1016/j.mri.2014.06.001 pmid:24970023
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (2)
American Journal of Neuroradiology
Vol. 45, Issue 2
1 Feb 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Recommended Resting-State fMRI Acquisition and Preprocessing Steps for Preoperative Mapping of Language and Motor and Visual Areas in Adult and Pediatric Patients with Brain Tumors and Epilepsy
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
V.A. Kumar, J. Lee, H.-L. Liu, J.W. Allen, C.G. Filippi, A.I. Holodny, K. Hsu, R. Jain, M.P. McAndrews, K.K. Peck, G. Shah, J.S. Shimony, S. Singh, M. Zeineh, J. Tanabe, B. Vachha, A. Vossough, K. Welker, C. Whitlow, M. Wintermark, G. Zaharchuk, H.I. Sair
Recommended Resting-State fMRI Acquisition and Preprocessing Steps for Preoperative Mapping of Language and Motor and Visual Areas in Adult and Pediatric Patients with Brain Tumors and Epilepsy
American Journal of Neuroradiology Feb 2024, 45 (2) 139-148; DOI: 10.3174/ajnr.A8067

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Resting-State fMRI in Tumors and Epilepsy
V.A. Kumar, J. Lee, H.-L. Liu, J.W. Allen, C.G. Filippi, A.I. Holodny, K. Hsu, R. Jain, M.P. McAndrews, K.K. Peck, G. Shah, J.S. Shimony, S. Singh, M. Zeineh, J. Tanabe, B. Vachha, A. Vossough, K. Welker, C. Whitlow, M. Wintermark, G. Zaharchuk, H.I. Sair
American Journal of Neuroradiology Feb 2024, 45 (2) 139-148; DOI: 10.3174/ajnr.A8067
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • LITERATURE SEARCH STRATEGY AND REVIEW PROCESS
    • RECOMMENDATIONS OF ACQUISITION AND PREPROCESSING STEPS
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Pseudo-Resting-State Functional MRI Derived from Dynamic Susceptibility Contrast Perfusion MRI Can Predict Cognitive Impairment in Glioma
  • Crossref (8)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Resting-State Functional MRI: Current State, Controversies, Limitations, and Future Directions—AJR Expert Panel Narrative Review
    Behroze A. Vachha, Vinodh A. Kumar, Jay J. Pillai, Joshua Shimony, Jody Tanabe, Haris I. Sair
    American Journal of Roentgenology 2024
  • Consensus recommendations for clinical functional MRI applied to language mapping
    Natalie L. Voets, Manzar Ashtari, Christian F. Beckmann, Christopher F. Benjamin, Tammie Benzinger, Jeffrey R. Binder, Alberto Bizzi, Bruce Bjornson, Edward F. Chang, Linda Douw, Jodie Gawryluk, Karsten Geletneky, Matthew F. Glasser, Sven Haller, Mark Jenkinson, Jorge Jovicich, Eric Leuthardt, Asim Mian, Thomas E. Nichols, Oiwi Parker Jones, Cyril Pernet, Puneet Plaha, Monika Połczyńska-Bletsos, Cathy J. Price, Geert-Jan Rutten, Michael Scheel, Joshua S. Shimony, Joanna Sierpowska, Lynne J. Williams, Ghoufran Talib, Michael Zeineh, Andreas Bartsch, Susan Bookheimer
    Aperture Neuro 2025 5
  • Exploring the Relationship Between White Matter Tracts and Resting-State Functional Language Lateralization Index
    Marie-Ève Desjardins, Karine Marcotte, Xanthy Lajoie, Christophe Bedetti, Bérengère Houzé, Abdelali Filali-Mouhim, Arnaud Boré, Maxime Descoteaux, François Rheault, Simona Maria Brambati
    Neurobiology of Language 2025 6
  • Identifying Inter‐Individual Differences in Cognitive Decline Using the Brain Connectome in Osteoporosis
    Chao Li, Xiaoping Ren, Kechong Zhou, Quan Sun, Ziwei Liao, Tianlun Gong, Yang Wang
    Journal of Magnetic Resonance Imaging 2025
  • Pseudo-Resting-State Functional MRI Derived from Dynamic Susceptibility Contrast Perfusion MRI Can Predict Cognitive Impairment in Glioma
    Nicholas S. Cho, Chencai Wang, Kathleen Van Dyk, Francesco Sanvito, Sonoko Oshima, Jingwen Yao, Albert Lai, Noriko Salamon, Timothy F. Cloughesy, Phioanh L. Nghiemphu, Benjamin M. Ellingson
    American Journal of Neuroradiology 2024 45 10
  • Resting-State Functional MRI in Dyslexia: A Systematic Review
    Bruce Martins, Isabel A. B. Verrone, Mariana M. I. Sakamoto, Mariana Y. Baba, Melissa E. Yvata, Katerina Lukasova, Mariana P. Nucci
    Biomedicines 2025 13 5
  • Seed-based resting-state connectivity as a neurosignature in fibromyalgia and depression: a narrative systematic review
    Betina Franceschini Tocchetto, Andrea Cristiane Janz Moreira, Álvaro de Oliveira Franco, Iraci L. S. Torres, Felipe Fregni, Wolnei Caumo
    Frontiers in Human Neuroscience 2025 19
  • Spectral feature modeling with graph signal processing for brain connectivity in autism spectrum disorder
    Ayesha Jabbar, Huang Jianjun, Muhammad Kashif Jabbar, Khalil ur Rehman, Anas Bilal
    Scientific Reports 2025 15 1

More in this TOC Section

  • Brain Imaging Quality Evaluation of Low-Dose Butterfly CBCT
  • Optimizing fMRI Protocols with Anesthesia
  • WEB Device for Aneurysm Imaging with UTE-MRI
Show more Neuroimaging Physics/Functional Neuroimaging/CT and MRI Technology

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editors Choice
  • Fellow Journal Club
  • Letters to the Editor

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • Special Collections

Resources

  • News and Updates
  • Turn around Times
  • Submit a Manuscript
  • Author Policies
  • Manuscript Submission Guidelines
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Submit a Case
  • Become a Reviewer/Academy of Reviewers
  • Get Peer Review Credit from Publons

Multimedia

  • AJNR Podcast
  • AJNR SCANtastic
  • Video Articles

About Us

  • About AJNR
  • Editorial Board
  • Not an AJNR Subscriber? Join Now
  • Alerts
  • Feedback
  • Advertise with us
  • Librarian Resources
  • Permissions
  • Terms and Conditions

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire