More articles from Adult Brain
- Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies
This study compares the predictive performance of relative CBV standardization against relative CBV normalization for quantifying recurrent tumor burden in high-grade gliomas relative to posttreatment radiation effects. The authors recruited 38 previously treated patients with high-grade gliomas (World Health Organization grades III or IV) undergoing surgical re-resection for recurrent tumor versus posttreatment radiation effects. They recovered 112 image-localized biopsies and quantified the percentage of histologic tumor content versus posttreatment radiation effects for each sample. They measured spatially matched normalized and standardized relative CBV metrics (mean, median) and fractional tumor burden for each biopsy. Across relative CBV metrics, fractional tumor burden showed the highest correlations with tumor content (0%–100%) for normalized and standardized values. With binary cutoffs, predictive accuracies were similar for both standardized and normalized metrics and across relative CBV metrics. Standardization of relative CBV achieves similar equivalent performance compared with normalized relative CBV and offers an important step toward workflow optimization and consensus methodology.
- SWAN-Venule: An Optimized MRI Technique to Detect the Central Vein Sign in MS Plaques
Multiple sclerosis lesions develop around small veins that are radiologically described as the so-called central vein sign. With 7T MR imaging and magnetic susceptibility-based sequences, the central vein sign has been observed in 80%–100% of MS lesions in patients' brains. However, a lower proportion ∼50% has been reported at 3T using SWAN. The authors' aim was to assess a modified version of SWAN optimized at 3T for sensitive detection of the central vein sign. Thirty subjects with MS were scanned on a 3T clinical MR imaging system. 3D T2-weighted FLAIR and optimized 3D SWAN, called SWAN-venule, were acquired after injection of a gadolinium-based contrast agent. Overall, the central vein sign was detected in 86% of the white matter lesions (periventricular, 89%; deep white matter, 95%; and juxtacortical, 78%). The SWAN-venule technique is an optimized MR imaging sequence for highly sensitive detection of the central vein sign in MS brain lesions.